6 research outputs found

    A Centralized SDN Architecture for the 5G Cellular Network

    Full text link
    In order to meet the increasing demands of high data rate and low latency cellular broadband applications, plans are underway to roll out the Fifth Generation (5G) cellular wireless system by the year 2020. This paper proposes a novel method for adapting the Third Generation Partnership Project (3GPP)'s 5G architecture to the principles of Software Defined Networking (SDN). We propose to have centralized network functions in the 5G network core to control the network, end-to-end. This is achieved by relocating the control functionality present in the 5G Radio Access Network (RAN) to the network core, resulting in the conversion of the base station known as the gNB into a pure data plane node. This brings about a significant reduction in signaling costs between the RAN and the core network. It also results in improved system performance. The merits of our proposal have been illustrated by evaluating the Key Performance Indicators (KPIs) of the 5G network, such as network attach (registration) time and handover time. We have also demonstrated improvements in attach time and system throughput due to the use of centralized algorithms for mobility management with the help of ns-3 simulations

    Exploring the Solubility and Bioavailability of Sodium Salt and Its Free Acid Solid Dispersions of Dolutegravir

    No full text
    Amorphous salt solid dispersion (ASSD) of Dolutegravir amorphous salt (DSSD) was generated using quench cooling and compared to its Dolutegravir free acid solid dispersion (DFSD) to improve the solubility and bioavailability. Soluplus (SLP) was used as a polymeric carrier in both solid dispersions. The prepared DSSD and DFSD, physical mixtures, and individual compounds were characterized by employing DSC, XRPD, and FTIR to assess the formation of the single homogenous amorphous phase and the existence of intermolecular interactions. Partial crystallinity was observed for DSSD, unlike DFSD, which is completely amorphous. No intermolecular interactions were observed between the Dolutegravir sodium (DS)/Dolutegravir free acid (DF) and SLP from the FTIR spectra of DSSD and DFSD. Both DSSD and DFSD improved the solubility of Dolutegravir (DTG) to 5.7 and 4.54 folds compared to the pure forms. Similarly, drug release from DSSD and DFSD was 2 and 1.5 folds higher than that in the pure form, owing to the rapid dissolution of the drug from the formulations. The permeability of DSSD and DFSD was estimated using the dialysis membrane, which enhanced the DTG permeability. The improvement in in vitro studies was translated into in vivo pharmacokinetic profiles of DSSD and DFSD, where 4.0 and 5.6 folds, respectively, improved the Cmax of DTG

    3rd National Conference on Image Processing, Computing, Communication, Networking and Data Analytics

    No full text
    This volume contains contributed articles presented in the conference NCICCNDA 2018, organized by the Department of Computer Science and Engineering, GSSS Institute of Engineering and Technology for Women, Mysore, Karnataka (India) on 28th April 2018
    corecore