4 research outputs found

    Robust excitation of C-band quantum dots for quantum communication

    Full text link
    Building a quantum internet requires efficient and reliable quantum hardware, from photonic sources to quantum repeaters and detectors, ideally operating at telecommunication wavelengths. Thanks to their high brightness and single-photon purity, quantum dot (QD) sources hold the promise to achieve high communication rates for quantum-secured network applications. Furthermore, it was recently shown that excitation schemes, such as longitudinal acoustic phonon-assisted (LA) pumping, provide security benefits by scrambling the coherence between the emitted photon-number states. In this work, we investigate further advantages of LA-pumped quantum dots with emission in the telecom C-band as a core hardware component of the quantum internet. We experimentally demonstrate how varying the pump energy and spectral detuning with respect to the excitonic transition can improve quantum-secured communication rates and provide stable emission statistics regardless of network-environment fluctuations. These findings have significant implications for general implementations of QD single-photon sources in practical quantum communication networks

    Triggered telecom C-band single-photon source with high brightness, high indistinguishability and sub-GHz spectral linewidth

    Full text link
    Long-range, terrestrial quantum networks will require high brightness single-photon sources emitting in the telecom C-band for maximum transmission rate. Many applications additionally demand triggered operation with high indistinguishability and narrow spectral linewidth. This would enable the efficient implementation of photonic gate operations and photon storage in quantum memories, as for instance required for a quantum repeater. Especially, semiconductor quantum dots (QDs) have shown these properties in the near-infrared regime. However, the simultaneous demonstration of all these properties in the telecom C-band has been elusive. Here, we present a coherently (incoherently) optically-pumped narrow-band (0.8 GHz) triggered single-photon source in the telecom C-band. The source shows simultaneously high single-photon purity with g(2)(0)=0.026g^{(2)}(0) = 0.026 (g(2)(0)=0.014g^{(2)}(0) = 0.014), high two-photon interference visibility of 0.508 (0.664) and high application-ready rates of 0.75 MHz (1.45 MHz) of polarized photons. The source is based on a QD coupled to a circular Bragg grating cavity combined with spectral filtering. Coherent (incoherent) operation is performed via the novel SUPER scheme (phonon-assisted excitation)

    Enhancing quantum cryptography with quantum dot single-photon sources

    Full text link
    Quantum cryptography harnesses quantum light, in particular single photons, to provide security guarantees that cannot be reached by classical means. For each cryptographic task, the security feature of interest is directly related to the photons' non-classical properties. Quantum dot-based single-photon sources are remarkable candidates, as they can in principle emit deterministically, with high brightness and low multiphoton contribution. Here, we show that these sources provide additional security benefits, thanks to the tunability of coherence in the emitted photon-number states. Generating either mixed or coherent states of light allows for enhanced performance of many quantum cryptography applications. We identify the optimal optical pumping scheme for the main quantum-cryptographic primitives, and benchmark their performance with respect to Poisson-distributed sources such as attenuated laser states and down-conversion sources. The presented results will guide future developments in solid-state and quantum information science for photon sources that are tailored to quantum communication tasks.Comment: Main Text 9 pages + Appendix 28 page
    corecore