7 research outputs found

    Anodic oxidation of the Ti-13Nb-13Zr alloy

    Get PDF
    This work presents the results of the investigations on the electropolishing and anodic oxidation of the Ti–13Nb–13Zr titanium alloy. Electropolishing was conducted in the solution containing ammonium fluoride and sulfuric acid, whereas the solution of phosphoric acid was used for anodic oxidation of the alloy. The influence of electropolishing and anodization process parameters on the texture (scanning electron microscopy (SEM)) and chemical composition (X-ray photoelectron spectroscopy (XPS)) of the surface layer was established. Electrochemical impedance spectroscopy in 5 % NaCl solution was used for the determination of the corrosion resistance of the alloy

    Electrochemical Polishing of Austenitic Stainless Steels

    No full text
    Improvement of the corrosion resistance capability, surface roughness, shining of stainless-steel surface elements after electrochemical polishing (EP) is one of the most important process characteristics. In this paper, the mechanism, obtained parameters, and results were studied on electropolishing of stainless-steel samples based on the review of the literature. The effects of the EP process parameters, especially current density, temperature, time, and the baths used were presented and compared among different studies. The samples made of stainless steel presented in the articles were analysed in terms of, among other things, surface roughness, resistance to corrosion, microhardness, and chemical composition. All results showed that the EP process greatly improved the analysed properties of the stainless-steel surface elements

    The Effect of Sodium Tetrafluoroborate on the Properties of Conversion Coatings Formed on the AZ91D Magnesium Alloy by Plasma Electrolytic Oxidation

    No full text
    Magnesium and its alloys are widely used in many areas because of their light weight, excellent dimensional stability, and high strength-to-weight ratio. However, the material exhibits poor wear and corrosion resistance, which limits its use. Plasma electrolytic oxidation (PEO) is an effective surface modification method for producing ceramic oxide layers on Mg and their alloys. The influence of the additions of sodium tetrafluoroborate (NaBF4) and sodium fluoride (NaF) into alkaline-silicate electrolyte on the properties of the conversion layers formed in the magnesium AZ91D alloy has been investigated. Surface morphology and chemical composition were determined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The anticorrosive properties of the layers were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) methods in simulated body fluid (SBF). The presence of NaBF4 or NaF in the electrolyte increases the corrosion resistance of the protective layer. However, the best anticorrosive properties show the layers obtained in the presence of NaBF4. This is probably caused by the incorporation of boron and fluorine in the form of Mg (BF4)2 mainly in the barrier layer
    corecore