8 research outputs found

    Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM)

    No full text
    <div><p>Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 <sup>14</sup>C yr BP) and Middle-Holocene (MH, 6000 <sup>14</sup>C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present.</p></div

    Comparison between model-based and pollen-based vegetation reconstructions during the Mid-Holocene (MH).

    No full text
    <p>Panels (A) to (G) map the hindcasted climatic suitability of the shown vegetation types, while panels (H) to (N) map the hindcasted binary distribution of each vegetation type. The blue dots in the maps represent the pollen sites for which the same vegetation type was identified for the MH.</p

    Kappa values between model-based and pollen-based vegetation reconstructions in the LGM and the MH for seven major vegetation types in both LGM and MH.

    No full text
    <p>Kappa values between model-based and pollen-based vegetation reconstructions in the LGM and the MH for seven major vegetation types in both LGM and MH.</p

    Contemporary vegetation distribution in China.

    No full text
    <p>(A) Observed (white area are croplands, urban areas and planted forests); (B) modeled; (C) the proportions of each vegetation type to the terrestrial area of China (observed: light gray line; modeled: dark gray line) and their range fillings calculated as the ratios between the observed and modeled distribution ranges (red line). Due to strong human disturbance, veg 5, 6, and 8 have experienced significant deforestation at the present, and therefore the proportions of observed vegetation types do not sum up to 100%.</p

    Percentage of persistence and changing vegetation distribution (A) from the Last Glacial Maximum (LGM) to the Mid-Holocene (MH), (B) from the MH to the present, and (C) from the LGM to the present.

    No full text
    <p>Dark blue: percentage of a vegetation type that remained unchanged between two time periods. Orange: percentage of a vegetation type that was converted to the most abundant new vegetation type (indicated with the type number in the orange bar). Grey: percentage of a vegetation type that was converted to all other vegetation types. For example, 40% of the LGM distribution range of veg 1 (taiga forest) remained unchanged at the present, 49% was converted to veg 17 (grass and forb meadow) in the MH and 11% were converted to other vegetation types (C).</p

    Comparison between model-based and pollen-based vegetation reconstructions during the Last Glacial Maximum (LGM).

    No full text
    <p>Panels (A) to (E) map the hindcasted climate suitability of the shown vegetation types, while panels (F) to (J) map the hindcasted binary distribution of each vegetation type. The blue dots in the maps represent the pollen sites for which the same vegetation type was identified during the LGM.</p
    corecore