2,714 research outputs found
A Variational Monte Carlo Study of the Current Carried by a Quasiparticle
With the use of Gutzwiller-projected variational states, we study the
renormalization of the current carried by the quasiparticles in
high-temperature superconductors and of the quasiparticle spectral weight. The
renormalization coefficients are computed by the variational Monte Carlo
technique, under the assumption that quasiparticle excitations may be described
by Gutzwiller-projected BCS quasiparticles. We find that the current
renormalization coefficient decreases with decreasing doping and tends to zero
at zero doping. The quasiparticle spectral weight Z_+ for adding an electron
shows an interesting structure in k space, which corresponds to a depression of
the occupation number k just outside the Fermi surface. The perturbative
corrections to those quantities in the Hubbard model are also discussed.Comment: 9 pages, 9 figure
Configuration space connectivity across the fragile to strong transition in silica
We present a numerical analysis for SiO_2 of the fraction of diffusive
direction f_diff for temperatures T on both sides of the fragile-to-strong
crossover. The T-dependence of f_diff clearly reveals this change in dynamical
behavior. We find that for T above the crossover (fragile region) the system is
always close to ridges of the potential energy surface (PES), while below the
crossover (strong region), the system mostly explores the PES local minima.
Despite this difference, the power law dependence of f_diff on the diffusion
constant, as well as the power law dependence of f_diff on the configurational
entropy, shows no change at the fragile to strong crossover
Interferometric measurement of resonance transition wavelengths in C IV, Si IV, Al III, Al II, and Si II
We have made the first interferomeric measurements of the wavelengths of the
important ultraviolet diagnostic lines in the spectra \ion{C}{4} near 155 nm
and \ion{Si}{4} near 139 nm with a vacuum ultraviolet Fourier transform
spectrometer and high-current discharge sources. The wavelength uncertainties
were reduced by one order of magnitude for the \ion{C}{4} lines and by two
orders of magnitude for the \ion{Si}{4} lines. Our measurements also provide
accurate wavelengths for resonance transitions in \ion{Al}{3}, \ion{Al}{2}, and
\ion{Si}{2}.Comment: 6 pages, 2 figures, 1 tabl
Development of a New, Precise Near-infrared Doppler Wavelength Reference: A Fiber Fabry-Perot Interferometer
We present the ongoing development of a commercially available Micron Optics
fiber-Fabry Perot Interferometer as a precise, stable, easy to use, and
economic spectrograph reference with the goal of achieving <1 m/s long term
stability. Fiber Fabry-Perot interferometers (FFP) create interference patterns
by combining light traversing different delay paths. The interference creates a
rich spectrum of narrow emission lines, ideal for use as a precise Doppler
reference. This fully photonic reference could easily be installed in existing
NIR spectrographs, turning high resolution fiber-fed spectrographs into precise
Doppler velocimeters. First light results on the Sloan Digital Sky Survey III
(SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE)
spectrograph and several tests of major support instruments are also presented.
These instruments include a SuperK Photonics fiber supercontinuum laser source
and precise temperature controller. A high resolution spectrum obtained using
the NIST 2-m Fourier transform spectrometer (FTS) is also presented. We find
our current temperature control precision of the FFP to be 0.15 mK,
corresponding to a theoretical velocity stability of 35 cm/s due to temperature
variations of the interferometer cavity.Comment: 16 pages, 11 figures. To appear in the proceedings of the SPIE 2012
Astronomical Instrumentation and Telescopes conferenc
Electronic structure of strongly correlated d-wave superconductors
We study the electronic structure of a strongly correlated d-wave
superconducting state. Combining a renormalized mean field theory with direct
calculation of matrix elements, we obtain explicit analytical results for the
nodal Fermi velocity, v_F, the Fermi wave vector, k_F, and the momentum
distribution, n_k, as a function of hole doping in a Gutzwiller projected
d-wave superconductor. We calculate the energy dispersion, E_k, and spectral
weight of the Gutzwiller-Bogoliubov quasiparticles, and find that the spectral
weight associated with the quasiparticle excitation at the antinodal point
shows a non monotonic behavior as a function of doping. Results are compared to
angle resolved photoemission spectroscopy (ARPES) of the high temperature
superconductors.Comment: final version, comparison to experiments added, 4+ pages, 4 figure
Recommended from our members
Distinct mechanisms of Drosophila CRYPTOCHROME-mediated light-evoked membrane depolarization and in vivo clock resetting.
Drosophila CRYPTOCHROME (dCRY) mediates electrophysiological depolarization and circadian clock resetting in response to blue or ultraviolet (UV) light. These light-evoked biological responses operate at different timescales and possibly through different mechanisms. Whether electron transfer down a conserved chain of tryptophan residues underlies biological responses following dCRY light activation has been controversial. To examine these issues in in vivo and in ex vivo whole-brain preparations, we generated transgenic flies expressing tryptophan mutant dCRYs in the conserved electron transfer chain and then measured neuronal electrophysiological phototransduction and behavioral responses to light. Electrophysiological-evoked potential analysis shows that dCRY mediates UV and blue-light-evoked depolarizations that are long lasting, persisting for nearly a minute. Surprisingly, dCRY appears to mediate red-light-evoked depolarization in wild-type flies, absent in both cry-null flies, and following acute treatment with the flavin-specific inhibitor diphenyleneiodonium in wild-type flies. This suggests a previously unsuspected functional signaling role for a neutral semiquinone flavin state (FADH•) for dCRY. The W420 tryptophan residue located closest to the FAD-dCRY interaction site is critical for blue- and UV-light-evoked electrophysiological responses, while other tryptophan residues within electron transfer distance to W420 do not appear to be required for light-evoked electrophysiological responses. Mutation of the dCRY tryptophan residue W342, more distant from the FAD interaction site, mimics the cry-null behavioral light response to constant light exposure. These data indicate that light-evoked dCRY electrical depolarization and clock resetting are mediated by distinct mechanisms
Linear stability analysis of capillary instabilities for concentric cylindrical shells
Motivated by complex multi-fluid geometries currently being explored in
fibre-device manufacturing, we study capillary instabilities in concentric
cylindrical flows of fluids with arbitrary viscosities, thicknesses,
densities, and surface tensions in both the Stokes regime and for the full
Navier--Stokes problem. Generalizing previous work by Tomotika (N=2), Stone &
Brenner (N=3, equal viscosities) and others, we present a full linear stability
analysis of the growth modes and rates, reducing the system to a linear
generalized eigenproblem in the Stokes case. Furthermore, we demonstrate by
Plateau-style geometrical arguments that only axisymmetric instabilities need
be considered. We show that the N=3 case is already sufficient to obtain
several interesting phenomena: limiting cases of thin shells or low shell
viscosity that reduce to N=2 problems, and a system with competing breakup
processes at very different length scales. The latter is demonstrated with full
3-dimensional Stokes-flow simulations. Many cases remain to be
explored, and as a first step we discuss two illustrative cases,
an alternating-layer structure and a geometry with a continuously varying
viscosity
- …