72 research outputs found

    SMAD4 loss enables EGF, TGF\u3b21 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells

    Get PDF
    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor \u3b21 (TGF\u3b21) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGF\u3b21 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGF\u3b21 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/\u3b2-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGF\u3b21 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-\u3baB and PI3K/AKT in response to TGF\u3b21 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/\u3b2-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGF\u3b21 and S100A8/A9 mainly inhibit NF-\u3baB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner

    New insights into SARS-CoV-2 Lumipulse G salivary antigen testing: accuracy, safety and short TAT enhance surveillance

    Get PDF
    Objectives The rapid, accurate and safe detection of SARS-CoV-2 is the key to improving surveillance and infection containment. The aim of the present study was to ascertain whether, after heat/chemical inactivation, SARS-CoV-2 N antigen chemiluminescence (CLEIA) assay in saliva remains a valid alternative to molecular testing. Methods In 2022, 139 COVID-19 inpatients and 467 healthcare workers were enrolled. In 606 self-collected saliva samples (Salivette), SARS-CoV-2 was detected by molecular (TaqPath rRT-PCR) and chemiluminescent Ag assays (Lumipulse G). The effect of sample pre-treatment (extraction solution-ES or heating) on antigen recovery was verified. Results Salivary SARS-CoV-2 antigen assay was highly accurate (AUC=0.959, 95% CI: 0.943-0.974), with 90% sensitivity and 92% specificity. Of the 254 antigen positive samples, 29 were false positives. We demonstrated that heterophilic antibodies could be a cause of false positive results. A significant antigen concentration decrease was observed after ES treatment (p=0.0026), with misclassification of 43 samples. Heat had a minimal impact, after treatment the correct classification of cases was maintained. Conclusions CLEIA SARS-CoV-2 salivary antigen provides accurate, timely and high-throughput results that remain accurate also after heat inactivation, thus ensuring a safer work environment. This supports the use of salivary antigen detection by CLEIA in surveillance programs

    SARS-CoV-2 RNA identification in nasopharyngeal swabs: issues in pre-analytics.

    Get PDF
    Abstract Objectives The direct identification of SARS-CoV-2 RNA in nasopharyngeal swabs is recommended for diagnosing the novel COVID-19 disease. Pre-analytical determinants, such as sampling procedures, time and temperature storage conditions, might impact on the end result. Our aim was to evaluate the effects of sampling procedures, time and temperature of the primary nasopharyngeal swabs storage on real-time reverse-transcription polymerase chain reaction (rRT-PCR) results. Methods Each nasopharyngeal swab obtained from 10 hospitalized patients for COVID-19 was subdivided in 15 aliquots: five were kept at room temperature; five were refrigerated (+4 °C); five were immediately mixed with the extraction buffer and refrigerated at +4 °C. Every day and for 5 days, one aliquot per condition was analyzed (rRT-PCR) for SARS-CoV-2 gene E and RNaseP and threshold cycles (Ct) compared. To evaluate manual sampling, 70 nasopharyngeal swabs were sampled twice by two different operators and analyzed separately one from the other. Results A total of 6/10 swabs were SARS-CoV-2 positive. No significant time or storage-dependent variations were observed in SARS-CoV-2 Ct. Re-sampling of swabs with SARS-CoV-2 Ct lower than 33 resulted in highly reproducible results (CV=2.9%), while a high variability was observed when Ct values were higher than 33 (CV=10.3%). Conclusions This study demonstrates that time and temperature of nasopharyngeal swabs storage do not significantly impact on results reproducibility. However, swabs sampling is a critical step, and especially in case of low viral load, might be a potential source of diagnostic errors

    Inflammation and pancreatic cancer: molecular and functional interactions between S100A8, S100A9, NT-S100A8 and TGFβ1

    Get PDF
    BACKGROUND: In order to gain further insight on the crosstalk between pancreatic cancer (PDAC) and stromal cells, we investigated interactions occurring between TGF\u3b21 and the inflammatory proteins S100A8, S100A9 and NT-S100A8, a PDAC-associated S100A8 derived peptide, in cell signaling, intracellular calcium (Cai2+) and epithelial to mesenchymal transition (EMT). NF-\u3baB, Akt and mTOR pathways, Cai2+ and EMT were studied in well (Capan1 and BxPC3) and poorly differentiated (Panc1 and MiaPaCa2) cell lines. RESULTS: NT-S100A8, one of the low molecular weight N-terminal peptides from S100A8 to be released by PDAC-derived proteases, shared many effects on NF-\u3baB, Akt and mTOR signaling with S100A8, but mainly with TGF\u3b21. The chief effects of S100A8, S100A9 and NT-S100A8 were to inhibit NF-\u3baB and stimulate mTOR; the molecules inhibited Akt in Smad4-expressing, while stimulated Akt in Smad4 negative cells. By restoring Smad4 expression in BxPC3 and silencing it in MiaPaCa2, S100A8 and NT-S100A8 were shown to inhibit NF-\u3baB and Akt in the presence of an intact TGF\u3b21 canonical signaling pathway. TGF\u3b21 counteracted S100A8, S100A9 and NT-S100A8 effects in Smad4 expressing, not in Smad4 negative cells, while it synergized with NT-S100A8 in altering Cai2+ and stimulating PDAC cell growth. The effects of TGF\u3b21 on both EMT (increased Twist and decreased N-Cadherin expression) and Cai2+ were antagonized by S100A9, which formed heterodimers with TGF\u3b21 (MALDI-TOF/MS and co-immuno-precipitation). CONCLUSIONS: The effects of S100A8 and S100A9 on PDAC cell signaling appear to be cell-type and context dependent. NT-S100A8 mimics the effects of TGF\u3b21 on cell signaling, and the formation of complexes between TGF\u3b21 with S100A9 appears to be the molecular mechanism underlying the reciprocal antagonism of these molecules on cell signaling, Cai2+ and EMT

    Molecular Refinement of Clinical Staging in Hepatocellular Carcinoma Patients Evaluated for Potentially Curative Therapies

    Get PDF
    Abstract: Aim: VEGF and AFP mRNA determinations in the blood are promising prognostic factors for patients with HCC. This study explores their potential prognostic synergy in a cohort of HCC patients evaluated for potentially curative therapies. Methods: One hundred twenty-four patients with a diagnosis of HCC were prospectively enrolled in the study. Inclusion criteria were: (a) histological diagnosis of HCC and assessment of tumour grade and (b) determination of AFP mRNA status and VEGF levels in the blood before therapy. Results: At baseline evaluation, 40% of the study group had AFP mRNA in the blood (AFP mRNA positive), and 35% had VEGF > 23 pg ml(-1) (VEGF positive). Surgery was performed in 58 patients (47%), 54 (43%) had tumour ablation, and 12 had chemoembolisation (10%). Median follow-up and survival of the study group were 19 and 26 months (range, 1 to 60), respectively. The association of AFP mRNA and VEGF proved to be prognostically more accurate than their single use in discriminating the risk of death (ROC curve analysis) and survival probability (Cox analysis). In particular, we identified 3 main molecular stages (p < 0,0001): both negative (3-year survival = 63%), one positive (3-year survival = 40%), both positive (3-year survival = 16%). Multivariate analysis identified BCLC staging, surgery, and molecular staging as the most significant survival variables. Conclusions: The preoperative determination of AFP mRNA status and VEGF may potentially refine the prognostic evaluation of HCC patients and improve the selection process for potentially curative therapies

    Genetic Perturbation of Pyruvate Dehydrogenase Kinase 1 Modulates Growth, Angiogenesis and Metabolic Pathways in Ovarian Cancer Xenografts

    No full text
    Pyruvate dehydrogenase kinase 1 (PDK1) blockade triggers are well characterized in vitro metabolic alterations in cancer cells, including reduced glycolysis and increased glucose oxidation. Here, by gene expression profiling and digital pathology-mediated quantification of in situ markers in tumors, we investigated effects of PDK1 silencing on growth, angiogenesis and metabolic features of tumor xenografts formed by highly glycolytic OC316 and OVCAR3 ovarian cancer cells. Notably, at variance with the moderate antiproliferative effects observed in vitro, we found a dramatic negative impact of PDK1 silencing on tumor growth. These findings were associated with reduced angiogenesis and increased necrosis in the OC316 and OVCAR3 tumor models, respectively. Analysis of viable tumor areas uncovered increased proliferation as well as increased apoptosis in PDK1-silenced OVCAR3 tumors. Moreover, RNA profiling disclosed increased glucose catabolic pathways—comprising both oxidative phosphorylation and glycolysis—in PDK1-silenced OVCAR3 tumors, in line with the high mitotic activity detected in the viable rim of these tumors. Altogether, our findings add new evidence in support of a link between tumor metabolism and angiogenesis and remark on the importance of investigating net effects of modulations of metabolic pathways in the context of the tumor microenvironment

    Genetic Perturbation of Pyruvate Dehydrogenase Kinase 1 Modulates Growth, Angiogenesis and Metabolic Pathways in Ovarian Cancer Xenografts

    No full text
    Pyruvate dehydrogenase kinase 1 (PDK1) blockade triggers are well characterized in vitro metabolic alterations in cancer cells, including reduced glycolysis and increased glucose oxidation. Here, by gene expression profiling and digital pathology-mediated quantification of in situ markers in tumors, we investigated effects of PDK1 silencing on growth, angiogenesis and metabolic features of tumor xenografts formed by highly glycolytic OC316 and OVCAR3 ovarian cancer cells. Notably, at variance with the moderate antiproliferative effects observed in vitro, we found a dramatic negative impact of PDK1 silencing on tumor growth. These findings were associated with reduced angiogenesis and increased necrosis in the OC316 and OVCAR3 tumor models, respectively. Analysis of viable tumor areas uncovered increased proliferation as well as increased apoptosis in PDK1-silenced OVCAR3 tumors. Moreover, RNA profiling disclosed increased glucose catabolic pathways—comprising both oxidative phosphorylation and glycolysis—in PDK1-silenced OVCAR3 tumors, in line with the high mitotic activity detected in the viable rim of these tumors. Altogether, our findings add new evidence in support of a link between tumor metabolism and angiogenesis and remark on the importance of investigating net effects of modulations of metabolic pathways in the context of the tumor microenvironment
    • …
    corecore