26 research outputs found

    Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization

    Get PDF
    © 2016 Elsevier B.V.Agricultural practices such as tillage, cover crops, and nitrogen (N) fertilization affect physico-chemical and biological soil parameters. However, these factors were often studied separately and their combined effects remain unclear, especially with respect to soil microbial functional diversity and carbon (C) and N content. Thereafter, we aim to assess the links between cropping systems and functional response of microbial communities by using a large range of soil chemical and biological measurements. A 5-yr field experiment was conducted in Northern France using a combination of three factors: i) no-till (NT) vs. conventional tillage (CT); ii) with or without winter cover crops (bare fallow; cover crops with a low prevalence of legumes; cover crop with a high prevalence of legumes); and iii) with or without N fertilization. C and N inputs from cover crops and crop residues, C and N content, enzyme activities, and microbial functional diversity in the topsoil (0–10 cm) were measured over an industrial crop rotation: wheat, pea, corn, wheat, flax. No-till combined with any of the cover crops was characterized by increased total soil organic C and N contents by more than 20% between 2010 and 2015. Dehydrogenase and urease activities were significantly greatest under NT, irrespective of the presence of cover crops. Cover crops without N fertilization under no-till led to higher microbial functional activity (faster carbohydrate and phenolic compound degradation) and diversity. Bare fallow had lower soil microbial functional diversity and C and N contents compared with soil under NT and cover crops. On the other hand, NT associated with cover crops allowed to maintain the soil in both C and N, and to promote microbial activities without N fertilization. In conclusion, winter cover crops and/or NT are sustainable agricultural practices resulting in a greater soil quality index. These results demonstrate that NT and use of standard cover crops or cover crops with legumes for 5 years under a low biomass return in industrial crop production have a positive effect on: i) upper soil C content and microbial enzymes, irrespective of N fertilization regime; ii) soil microbial functional diversity in the absence of N fertilization

    Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial

    Get PDF
    IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved

    Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization

    No full text
    © 2016 Elsevier B.V.Agricultural practices such as tillage, cover crops, and nitrogen (N) fertilization affect physico-chemical and biological soil parameters. However, these factors were often studied separately and their combined effects remain unclear, especially with respect to soil microbial functional diversity and carbon (C) and N content. Thereafter, we aim to assess the links between cropping systems and functional response of microbial communities by using a large range of soil chemical and biological measurements. A 5-yr field experiment was conducted in Northern France using a combination of three factors: i) no-till (NT) vs. conventional tillage (CT); ii) with or without winter cover crops (bare fallow; cover crops with a low prevalence of legumes; cover crop with a high prevalence of legumes); and iii) with or without N fertilization. C and N inputs from cover crops and crop residues, C and N content, enzyme activities, and microbial functional diversity in the topsoil (0–10 cm) were measured over an industrial crop rotation: wheat, pea, corn, wheat, flax. No-till combined with any of the cover crops was characterized by increased total soil organic C and N contents by more than 20% between 2010 and 2015. Dehydrogenase and urease activities were significantly greatest under NT, irrespective of the presence of cover crops. Cover crops without N fertilization under no-till led to higher microbial functional activity (faster carbohydrate and phenolic compound degradation) and diversity. Bare fallow had lower soil microbial functional diversity and C and N contents compared with soil under NT and cover crops. On the other hand, NT associated with cover crops allowed to maintain the soil in both C and N, and to promote microbial activities without N fertilization. In conclusion, winter cover crops and/or NT are sustainable agricultural practices resulting in a greater soil quality index. These results demonstrate that NT and use of standard cover crops or cover crops with legumes for 5 years under a low biomass return in industrial crop production have a positive effect on: i) upper soil C content and microbial enzymes, irrespective of N fertilization regime; ii) soil microbial functional diversity in the absence of N fertilization

    Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization

    Get PDF
    © 2016 Elsevier B.V.Agricultural practices such as tillage, cover crops, and nitrogen (N) fertilization affect physico-chemical and biological soil parameters. However, these factors were often studied separately and their combined effects remain unclear, especially with respect to soil microbial functional diversity and carbon (C) and N content. Thereafter, we aim to assess the links between cropping systems and functional response of microbial communities by using a large range of soil chemical and biological measurements. A 5-yr field experiment was conducted in Northern France using a combination of three factors: i) no-till (NT) vs. conventional tillage (CT); ii) with or without winter cover crops (bare fallow; cover crops with a low prevalence of legumes; cover crop with a high prevalence of legumes); and iii) with or without N fertilization. C and N inputs from cover crops and crop residues, C and N content, enzyme activities, and microbial functional diversity in the topsoil (0–10 cm) were measured over an industrial crop rotation: wheat, pea, corn, wheat, flax. No-till combined with any of the cover crops was characterized by increased total soil organic C and N contents by more than 20% between 2010 and 2015. Dehydrogenase and urease activities were significantly greatest under NT, irrespective of the presence of cover crops. Cover crops without N fertilization under no-till led to higher microbial functional activity (faster carbohydrate and phenolic compound degradation) and diversity. Bare fallow had lower soil microbial functional diversity and C and N contents compared with soil under NT and cover crops. On the other hand, NT associated with cover crops allowed to maintain the soil in both C and N, and to promote microbial activities without N fertilization. In conclusion, winter cover crops and/or NT are sustainable agricultural practices resulting in a greater soil quality index. These results demonstrate that NT and use of standard cover crops or cover crops with legumes for 5 years under a low biomass return in industrial crop production have a positive effect on: i) upper soil C content and microbial enzymes, irrespective of N fertilization regime; ii) soil microbial functional diversity in the absence of N fertilization

    Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization

    No full text
    © 2016 Elsevier B.V.Agricultural practices such as tillage, cover crops, and nitrogen (N) fertilization affect physico-chemical and biological soil parameters. However, these factors were often studied separately and their combined effects remain unclear, especially with respect to soil microbial functional diversity and carbon (C) and N content. Thereafter, we aim to assess the links between cropping systems and functional response of microbial communities by using a large range of soil chemical and biological measurements. A 5-yr field experiment was conducted in Northern France using a combination of three factors: i) no-till (NT) vs. conventional tillage (CT); ii) with or without winter cover crops (bare fallow; cover crops with a low prevalence of legumes; cover crop with a high prevalence of legumes); and iii) with or without N fertilization. C and N inputs from cover crops and crop residues, C and N content, enzyme activities, and microbial functional diversity in the topsoil (0–10 cm) were measured over an industrial crop rotation: wheat, pea, corn, wheat, flax. No-till combined with any of the cover crops was characterized by increased total soil organic C and N contents by more than 20% between 2010 and 2015. Dehydrogenase and urease activities were significantly greatest under NT, irrespective of the presence of cover crops. Cover crops without N fertilization under no-till led to higher microbial functional activity (faster carbohydrate and phenolic compound degradation) and diversity. Bare fallow had lower soil microbial functional diversity and C and N contents compared with soil under NT and cover crops. On the other hand, NT associated with cover crops allowed to maintain the soil in both C and N, and to promote microbial activities without N fertilization. In conclusion, winter cover crops and/or NT are sustainable agricultural practices resulting in a greater soil quality index. These results demonstrate that NT and use of standard cover crops or cover crops with legumes for 5 years under a low biomass return in industrial crop production have a positive effect on: i) upper soil C content and microbial enzymes, irrespective of N fertilization regime; ii) soil microbial functional diversity in the absence of N fertilization

    Analizando la Mantenibilidad de Software Desarrollado Durante la Formación Universitaria

    Get PDF
    La calidad de los programas de software (SW) es considerada cuando éstos se realizan bajo estrictas metodologías y siguiendo estándares que intentan reducir la probabilidad de presentar defectos. La obtención de métricas de SW es un método útil para minimizar dicha probabilidad. Para evaluar la calidad de un programa de SW, uno de los indicadores más importantes es la mantenibilidad, la cual se puede medir mediante la obtención de un conjunto de métricas. La mantenibilidad es la facilidad con la que un sistema de SW puede ser modificado y es un atributo que afecta de manera crucial al costo de desarrollo del mismo. La literatura muestra estudios sobre mantenibilidad y la alteración de este parámetro cuando los programas evolucionan. Este trabajo muestra los resultados de analizar 315 programas realizados por estudiantes universitarios de carreras en Ingeniería en Computación e Informática y la evolución que la mantenibilidad y otras métricas básicas presentan en función del progreso en la formación académica de sus autores
    corecore