1,045 research outputs found

    Collisional transport across the magnetic field in drift-fluid models

    Get PDF
    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum and pressures in drift-fluid turbulence models and thereby obviate the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport

    Simulation of transition dynamics to high confinement in fusion plasmas

    Get PDF
    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in close agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST. Particularly, the slow transition with an intermediate dithering phase is well reproduced by the numerical solutions. Additionally, the model reproduces the experimentally determined L-H transition power threshold scaling that the ion power threshold increases with increasing particle density. The results hold promise for developing predictive models of the transition, essential for understanding and optimizing future fusion power reactors

    Cold pulse and rotation reversals with turbulence spreading and residual stress

    Get PDF
    Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence spreading and residual stress are calculated from the gradient of the turbulence intensity. In the model presented in this paper, the flux is carried by the turbulence intensity field, which in itself is subject to radial transport effects. The pulse polarity inversion and the rotation profile reversal positions are close to the radial location of the stable/unstable transition. Both effects have no direct explanation within the framework of classical transport modeling, where the fluxes are related directly to the linear growth rates, the turbulence intensity profile is not considered and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable. As an additional and new effect, the model predicts a perturbation of the velocity profile following a cold pulse from the edge. This allows direct experimental confirmation of both the existence of residual stress caused by turbulence intensity profiles and fundamental ideas of transport modeling presented here. Published by AIP Publishing

    Shear Flow Generation and Energetics in Electromagnetic Turbulence

    Full text link
    Zonal flows are recognised to play a crucial role for magnetised plasma confinement. The genesis of these flows out of turbulent fluctuations is therefore of significant interest. We investigate the relative importance of zonal flow generation mechanisms via the Reynolds stress, Maxwell stress, and geodesic acoustic mode (GAM) transfer in drift-Alfv\'en turbulence. By means of numerical computations we quantify the energy transfer into zonal flows owing to each of these effects. The importance of the three driving ingredients in electrostatic and electromagnetic turbulence for conditions relevant to the edge of fusion devices is revealed for a broad range of parameters. The Reynolds stress is found to provide a flow drive, while the electromagnetic Maxwell stress is in the cases considered a sink for the flow energy. In the limit of high plasma beta, where electromagnetic effects and Alfv\'en dynamics are important, the Maxwell stress is found to cancel the Reynolds stress to a high degree. The geodesic oscillations, related to equilibrium pressure profile modifications due to poloidally asymmetric transport, can act as both sinks as drive terms, depending on the parameter regime. For high beta cases the GAMs are the main drive of the flow. This is also reflected in the frequency dependence of the flow, showing a distinct peak at the GAM frequency in that regime.Comment: 16 pages, 12 Figure

    Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    Full text link
    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass--charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org/pop

    ExB mean flows in finite ion temperature plasmas

    Get PDF
    The impact of ion pressure dynamics on E x B mean flows is investigated. Using a simplified, two-dimensional, drift ordered fluid model in the thin-layer approximation, three stresses in addition to the Reynolds stress are shown to modify the E x B mean flow. These additional terms in the stress tensor all require ion pressure fluctuations. Quasi-linear analysis show that these additional stresses are as important as the Reynolds stress, and hence must be taken into account in analysis of transport barriers in which sheared E x B mean flows are key ingredients

    Particles in classically forbidden area, neutron skin and halo, and pure neutron matter in Ca isotopes

    Get PDF
    The nucleon density distributions and the thickness of pure neutron matter in Ca isotopes were systematically studied using the Skyrme-Hartree-Fock model (SHF) from the β\beta-stability line to the neutron drip-line. The pure neutron matter, related with the neutron skin or halo, was shown to depend not only on the Fermi levels of the neutrons but also on the orbital angular momentum of the valence neutrons. New definitions for the thickness of pure neutron matter are proposed.Comment: 6 pages, 5 figure

    Turbulent equipartition and the dynamics of transport barriers in electrostatic turbulence (poster)

    Get PDF
    • …
    corecore