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PublishiBghl mean flows in finite ion temperature plasmas

J. Madsen,>® J. Juul Rasmussen,* V. Naulin,* and A. H. Nielsen?
Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby,

Denmark
(Dated: Monday 24" April, 2017) /

The impact of ion pressure dynamics on £ X B mean v;s)s investigated. Using a
simplified, two-dimensional, drift ordered fluid model in the thin-layer approximation,
three stresses in addition to the Reynolds stress afegh to modify the £ x B mean
flow. These additional terms in the stress tensbr all require ion pressure fluctuations.

Quasi-linear analysis show that these actj.::n stgsses are as important as the
i

Reynolds stress, and hence must be taken i 6691311’5 in analysis of transport barriers
in which sheared £ x B mean flows %ﬂ‘gﬁ:dienm.
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Publishihg INTRODUCTION

45 in magnetically

Sheared mean flows are necessary for the formation of transport barriers
confined plasmas. Transport barriers are always accompanied by a sheared radial electric
field E, and an associated E x B mean flow?, which in combinétion with flows along
the magnetic field quench cross-field turbulent transport through (Z: elation of turbulent
eddies®’. Several mechanisms capable of driving mean flows h eaen suggested®, but it is
unclear whether the observed mean flows are due to a single mgtivesforce or whether they
are a result of an interplay between many mechanisms. ‘)"“'--.

A particular mechanism for mean flow generation rélies on the Reynolds stress tensor®!. It
couples fluctuations and mean flows and hence renders ttzbulence driven mean flows possible.
In order to distinguish turbulence driven m r?Cows“&om equilibrium flows, turbulence
driven mean flows are often called zonal flows. SBoth types of mean flows can suppress
turbulence. In the fluid description the R@ress originates from the advection non-

linearity in the fluid momentum equatio \Byﬁeparating the velocity field into mean and
fluctuating parts: w = (u) + w an }?r@gl g the momentum equation one gets for an

incompressible flow V - u = 0: \\
0

S V) + V- () () = £, 1)

S,S}&S, and sources. The average operation (-) is unspecified here

where L represents for
but is usually eitherfa timesaverage, a flux surface average, or both. The Reynolds stress

tensor (uu) can dhibitas well as enhance mean flows, but in strongly magnetized plasmas

the approximate tw\ochensional character of turbulence implies that energy is preferably

10,13,39

transfered fro aller to larger scales . The energy transfer is between the kinetic

s and the kinetic energy of the mean flow. Therefore, Reynolds stress
drived mean s do not directly tap free energy but relies on conversion of free energy

37, On closed magnetic surfaces in strongly

into.fu ua&}g energy by other mechanisms
m neti%yd fusion plasmas, the mean convective term V - ((u)({w)) is usually negligible
‘De(;‘age gradients of the mean flow are to a good approximation perpendicular to the mean
itself.
When a plasma is subject to a strong confining magnetic field the dynamics is strongly

anisotropic. Charged particles are approximately trapped on magnetic field lines along which

they flow unhindered. When studying mean flows it is therefore convenient to apply models


http://dx.doi.org/10.1063/1.4985329

! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishiwfcre this anisotropy is exploited a priori. The strong confining magnetic field implies
that the magnetic dipole moment associated with the Larmor orbits of charged particles
around magnetic field lines is an adiabatic invariant'. The invariance can be used in a
dynamical reduction of the governing equations which lowers the computational costs by
orders of magnitudes®. This is exploited in turbulence models Whi?( normally only consider

»

equations the strong anisotropy imposed by the strong magneti¢‘field appears explicitly.
Velocities are split into perpendicular and parallel parts. I%e

d BB -drift: up = Ex B/B>.
Advection by other perpendicular fluid drifts associated Withg;)a ticle drifts such as the grad-

5,1

dynamics on time scales longer than the inverse ion gyrofreq £, In the resulting

ion perpendicular to

the magnetic field advection is in most cases dominated by

B, curvature, and polarization drifts are inferior @omp ison to the £/ X B advection, but

they are essential for the turbulence because t correﬂ)?nding currents are dominant in the

quasi-neutrality constraint V-J = 0. In driéw(~L odels, which are used in this paper, the

grad-B and curvature drifts and the mae%ic‘i{ ol current are contained in the diamagnetic
1X0)

drift up'®. As in gyrokinetic® and id models'®, the diamagnetic and E x B drifts
are assumed to be of the same rd%m‘agmtude. However, since advection of all fluid
fields by the diamagnetic drift ca;ma

responsible for transport over %ﬁopic distances. Therefore, it is only the mean F x B

flow which is relevant i smdiSs of decorrelation of turbulent eddies by perpendicular mean

I moment equations*?, the diamagnetic flow is not

fows.

£

In this paper se ivgstighte how ion pressure dynamics influences £ x B mean flows.

i%&nean flows have been studied extensively” and studies including ion
i

6,11,20,28,36,38,39 A

are numerous common feature of these studies is that

”pure” mean flows but rather mean flows with multiple components. In
gyrokinetic andgyrofluid treatments®!'1:20:2838 the results concern mean flows, actually mean
gyroscenter Iiomentum densities, in gyro-center coordinate space. Gyro-center space is a
m them%tical construction which provides tractable equations describing the dynamics down

‘fbﬁ}&)-radius length scales. The use of gyro-center coordinates is motivated by the notorious

2042 gss0ciated with gyro-radius length scale dynamics entering models

tedious expressions
expressed in standard coordinates. However, gyro-center coordinates are by construction
not only functions of position and velocity but also of the electromagnetic potentials. To

illustrate this point we express the zeroth order gyro-center moment, the gyro-center density
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Publishing in terms of physical quantities such as the particle density n, the ion scalar pressure p;,

and the electric potential ¢. In a quasi-neutral plasma n; = n, we get?>24

Di n;

where only terms to second order in k, p; are retained. Here, k| {{ characteristic inverse
and Q;

gradient length scale,p; is the ion gyro-radius, p; is the ion pres

ion gyro frequency, where ¢; and m; are the ion charge and ass, ¥espectively. The perpen-
dicular projection of the gradient operator is defined as V4 =\-b b x V), where b=B /B

16, = ¢;B/m; is the

is a unit vector parallel to the magnetic field B. Results nulated in gyro-center coordi-
nates are therefore only directly relevant for the dynamics osgyrocenters, which is of course
highly relevant, but in order to translate these r@ts to measureable quantities the results

20,41

must be transformed to well-known physical vagiablgsifa process which is tedious™*". In

low-frequency fluid models'” another but welated issue appears. Here, the dominant perpen-
dicular drifts are the fluid F x B and dixrhaf\\ﬁtic velocity fields. In previous works?8:29:36:39
only the momentum and mean flow Q%tio ; for the combined E x B and ion diamagnetic
flow were considered. This approdch is foblématic because the mean flow then includes the
diamagnetic flow, which is n Oe&n ihle for transport on the macroscopic length scale.
The main objective of th&h to investigate the ' x B mean flow and hence to
disentangle the £/ x B nd}jﬁamagnetic parts. Considering the pure £ x B mean flow
significantly complicdtes t erning equations. We have therefore deliberately chosen a
paradigmatic, eleétrostatic drift fluid model in two-dimensional slab geometry, where dy-
HMRZ field has been omitted. The model is presented in Sec. II. Even
'h:§etup we show in Sec. III that the £ x B mean flow can be modified by four

namics along

in this simpli

X B Reynolds stress (tpug) and ii) a diamagnetic Reynolds stress®

terms: 1)“Chefpure
propaftional u,0,p;), where the u, denotes the "azimuthal” component of the £ x B
drift., 114, We' also show that £ x B mean flows may be driven by a term proportional to
(it ) 1§ the stress tensor which is only finite when the magnetic field is inhomogeneous
B 1/R # 0, where R is the major radius. iv) Lastly we demonstrate the existence of a com-
ponent proportional to 2/3(Ep;0yp.) of the stress tensor, which does not require £ x B drift
fluctuations. The corresponding energy transfer terms, also commonly denoted production

terms, are analyzed and conditions for enhancement and attenuation of £ x B mean flows

for the individual energy transfer channels are determined. Next, in Sec. IV we proceed

4
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Publishiwgh a quasi-linear analysis which reveals that that none of the four mean flow generation

mechanisms are negligible. Lastly, our results are summarized and discussed in Sec. V.

II. MODEL

This study uses an electrostatic drift fluid model!%1722:36 we l—éj for studies of low-

frequency turbulence in strongly magnetized plasmas particula Dthe edge and scrape-off

layer regions. The derivation of the model relies on the drift«or

<

w u
o " <5 ¢ Ly BB o )

That is, the model is only applicable to studies of low=frequency dynamics where the char-

;g and hence on the

existence of the small parameters:

acteristic frequency w is much smaller than theon ngfrequency Q; = ¢;B/m;. Here, B
is the magnitude of the magnetic field, ar&ﬂ‘ nd 7n; denote ion charge and mass, respec-
a

tively. Further, the ordering presuppo%he fluid velocity u is smaller than the ion
he e

sound speed ¢, = \/T./m;, where Ty &ﬁ tron temperature, and that the characteristic
gradient length scale L, is longg:a aqybrid ion gyroradius ps = ¢/€);. Finally, the

gradient length scale Lg of t i¢ field is described by the small parameter €p.

An advantage of the drif‘% is that algebraic expressions for the perpendicular
part of odd fluid momeut e‘qMSOHS can be derived by a perturbative expansion in the small
parameters. For ins n& imple quasi-neutral plasma (n = n, =~ n;), the terms on the
right hand side %he /:)mgﬁtum equation

ﬁam—l— Uy - V)u, +V -7, = =Vp, + qn(E + u, x B) (4)
dominategénd balance to lowest order under drift ordering. Here, the subscript a is a species
label,
B is

p rg‘éndjitu r drifts are given as:

scdlar pressure, E = —V¢ is the electric field, ¢ is the electrostatic potential,

c magletic field, and 7, denotes the gyroviscous tensor. Therefore, the zeroth order

bx Ve bxVp,
o = o = . 5)
S ~ U Uugp +up B -+ anLB ( )

Byexpanding the perpendicular velocity in €, the first order drifts, that represent the small

terms on the left hand side of Eq. (4), become:

N g 4 +B><v-7r ©)
u =u Uy = — —_—u + —.
bt v B Y) dt qnB
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Publishific zeroth order drifts are the familiar £/ X B -drift up and the diamagnetic drift wp,
and the first order drifts are the polarization drift w, and a gyroviscous drift u,. Inertia is
described by the polarization drift. The dominant effect of the gyroviscous drift is to cancel
the advection of momentum by the diamagnetic drift. This cancellation is in the literature
refered to as the gyro-viscous cancellation®*172242 The first orde%rifts in u, ; depend on

N

the species mass, and hence only the ion drifts are retained. 3
In this study we investigate the influence of ion pressure dynamiés on the generation, sus-
tainment, and damping of mean flows. For this purpose a foj the,convenience of exposition

we neglect the time-evolution of the parallel momentum and consider only the drift ordered
—

equations governing the time evolution of vorticity a%ﬁo and ion pressure??27:30;

V - (na,y,) (\y -O)um-) + V- (n(uDi - uDe)) = Ay,
[\ (7a)
TN Y *
pi+§v'(pi[uE+uDi+upi+ Dt mY fup +upi+up, +ud + Vg = Ay,

20t
(7b)

) +peV - [up+up) + Vgl =A,,

(7c)

N | Qo

Do
=
+
)
+
I
$

where the diamagnetic ux is given as
4,

5 bxVT,
y. — .

/ / = 2paqa—B (8)
The terms A A§ and A, on the right hand sides of Egs. (7a)-(7c) represent, unspecified,

ics! collisional effects, and sources and sinks. We restrict the model to a local

.Y, z) at the outboard midplane with the unit vector £ aligned with the

inhonfogeneousanagnetic field B = B(r)2. Periodic boundary conditions are invoked in the

izectiQn.

The x’))rticity equation (7a) is derived from the quasi-neutrality constraint V - J = 0
myla e electron and ion continuity equations (not shown here). The diamagnetic drift
répresents the grad-B and curvature drifts, and diamagnetism due to gyration, which do
not contribute to any particle transport over macroscopic distances when the magnetic field
is constant. Therefore, all terms in the vorticity equation are of order €2 despite that the

diamagnetic current is of order e. In the vorticity equation (7a) we make the thin-layer

6
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Publishimgiroximation®»%-4_ The approximation neglects particle density variations in the polar-
ization and gyroviscous fluxes in the vorticity equation. The approximation resembles the
Boussinesq approximation®! in neutral fluid dynamics and is commonly invoked but is only
strictly valid in regions with small particle density variations. Explicitly, the polarization
and gyroviscous fluxes in the vorticity equation are approximated ‘A”

v.(num)+v.(num)_—v{ (gt B v “‘f qz;g())] 9)

where ng, By and Qy = eBy/m; are characteristic, co Stﬁj es of the particle den-

sity, the magnetic field, and the ion gyrofrequency, respe Vely Here, the magnetic field

is taken constant everywhere for two reasons: first, nder&iri t ordering the variation of
the background magnetic field in our local dorr@ is mintte. Secondly, energy conserva-

tion in models making the thin-layer approximagion gegiires that the magnetic field in the

polarization and gyroviscous fluxes is ke@ 239 The absence of advection by the

diamagnetic drift in equation (9) is d\‘&&.h\ofc\gyro—viscous cancellation?172242 By in-
vortielt

spection of Eq. (9) we also see that ity equation in fact governs the time evolution
of the magnetic-field-aligned comiponents of the E x B and ion diagmagnetic vorticities:
b- V xu, g ~V2¢/By+ Vip %)

In the vorticity equation (7a) ther al energy can be transformed into kinetic energy and
hence drive instabilities@and electrostatic turbulence. All terms in the vorticity equation are
of order €? includin the ?} transfer terms. The time evolution of thermal energy is

described by the res e egliations (7b)-(7c) where the leading order terms are of order e,

but where these crg ransfer terms evidently are of order €

c nserve energy, energy transfer terms balancing their counterparts in the

states. P}thhermore, turbulence driven mean flows rely on similar energy transfer mecha-
Yhﬁns\ which also require energy conservation for a correct description of energy exchange
between e.g., electrostatic fluctuations and £ x B mean flows. Therefore, we retain all sec-
ond order terms in the pressure equations required for energy conservation. The remaining

2

terms of order €* in the pressure equations are neglected. A detailed description of the

second order terms are found in appendix A.

7
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PublishingTo conclude, these approximations leave us with a paradigmatic, energy conserving model

describing turbulence, lowest order finite Larmor radius (FLR) effects, ion temperature

dynamics, and E X B mean flows:

QOV (L‘)t ’ By V} [ By " QiBon0:|> v (n[uDe/uDz]) = Mo, (10a)
3[0  2xVé ’ )
2 [& o V] pi+piV - up + n—OV - (n] ejuDi — A,,, (10b)

where the compression of the polarization and gyroviseol - (up, + uy,)” in the

310 2xVo
wpiv

ion pressure equation (7a) were eliminated using the orticiﬁy equation (7b). Contributions

the redefined A,,. Our model

from A, in the ion pressure equation have been@orbe
resembles other local drift fluid models (see eug. Rég 35 and 48), but in these models
dependent variables are linearized e.g., p; %ov Sug.

It is convenient to introduce the Gy%flormahzation

x i ep
Qi t— t? 7 ? De,iy ? ) 11
0 Ps E el P ’ TeO ¢ ( )

which allows us to recast the '1ode\N following simple form:
V&(SVM*) €2 (et pi) = Ao (12a)
dt Oy ’

d 0 0
@ - pifa—i +pifa—y(pe +pi) = Ay, (12b)

y. 3d d¢

é\ 5%% —Pefa—y = Ay, (12¢)

e curvature constant and R ~ Lp denotes the major radius. Note that

subsefuent sections, but does not capture the characteristic length and time scales of the

where § = £
the gyrofBohi n/o alization was introduced to simplify algebraic manipulations in the
del ich)re larger and longer typically? of the order of L and c; /L, Lp, respectively.

e adv%;tive derivatives are defined as

wx 20 (13

where the F x B -advection is written in terms of the anti-symmetric bracket
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¢" = o+ pi. (15)

It is notable that the particle density is absent from the model if we disregard collisions.

This feature is mainly due to the thin-layer approximation. /

A. Energy theorem \5
t

The conserved energy is derived in two steps. First, the elegtron”and ion pressure equa-

tions (12¢)-(12b) are integrated neglecting surface tefms. Next the vorticity equation (12a)
faci terms. Adding the results we

where the energy density is given by

Vg™ L¢*!2
£ = 5 \ \_ pz +pe (17>
and \
S'= Ay, + A — 7M. (18)

The energy density corﬁg\ the ion and electron thermal energy densities & and &,
respectively, and[{he ift,

the magnetic drlft energy is a consequence of the thin-layer approximation invoked

is multiplied by ”—¢” and integrated again negle tin
get

/énergy” density £*. The absence of the particle density n and

—_

in the vorticitynefuation (12a). The drift energy is a function of the modified potential ¢*

and can uﬂde?t od as the energy associated with the £ x B and diamagnetic drifts, or
alter tlvely escribing the FLR corrected E x B kinetic energy and FLR corrections to
xkal energy?>47 The time-evolutions of the individual parts of the integrated

energy deISItleS are given as

\ d d L) 8pe
\ _ E3 * _ . _
= de & /dac Epi + pe] = 3 + Ep; P*A (19)
d d B 8¢ 8pe
Up = [iwe - / Q" — epte 4 A, (20)
d d 8cz5
e = dt/d g, _/dmgpe 5y + A, (21)
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Publishiﬁg( re are two types of energy transfer channels: i) the finite compression of the £ x B
drift*?, represented by the £p;0,¢ and Ep.d,¢ terms, allow an interchange of thermal energy
and kinetic energy. ii) The finite compression of the first order drifts are responsible for the

second type of energy transfer channel. This effect is represented by the {p;0,p. terms.

II1. MEAN FLOWS

\/’\

In this section we analyze how ion pressure dynamlcs X B mean flows in
our two-dimensional interchange turbulence model pre ..ukSec IT. The analysis en-
compasses a derivation of a ' x B mean flow equati n-z?nd nalysis of energy transport
between free (thermal) energy, fluctuations and n iles

In this paper the averaging operation defini g n dquantities is a spatial average in the

periodic y-direction direction

dy f. (22)

Here, f is an arbitrary function and Wth{: omain length in the y-direction. The fluctu-
ating part is defined accordingly f% (f). Using the vorticity equation (12a) the time

36,39 ting parts of the drift energy is obtained

evolution of the mean an

_ — (A, 23
95 ﬁ% S G — () ) (23)
0*(¢") , 09 0¢” 99"~
D = [d g 0 G A, (24
il dt L /‘” 97 oy or) TP PGS0 (24)
The time evol he energy integrals given in Egs. (24),(20), and (21) reveal an energy
transfer be e * and the ion and electron thermal energy densities F; and F, by the term:

" The fitst term on the right hand sides of both equations, the modified Reynolds

stress produ 1on terms, yield a energy transfer between the mean and the fluctuating drift
S term includes the standard E x B Reynolds stress production term wug(u,u,),

re us — ygb and u, = .6 denote the x and y components of the fluctuating E x B

H‘P;ft,\respectlvely, and u(, = 0,uo is the shear of the mean F x B flow

o(e)

The Reynolds stress production term describes an energy transfer due to fluctuating radial

transport of azimuthal momentum in the presence of a sheared mean flow. However, due to

10
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Publishitig presence of the modified potential ¢* in the modified production term, it is also a function
of the mean and fluctuating parts of the ion diamagnetic drift. Since no fields are advected
by the diamagnetic drift, these extra terms lack an obvious interpretation. Furthermore,
the interpretation of the drift energy density £* itself is not immediately obvious. Since the
particle density is advected by the F x B drift, it is more informative to consider the time
evolution of the integrated E x B mean flow energy, the integrat d—%l()t ting F/ x B energy,
and the residual drift energy defined as:

Ey = / d"”; b= / dz <M¢|2 d Dp— +(Vo-Vip),  (26)

—_—

respectively. The time-evolution of these energy in rals re derived from the vorticity

-

equation (12a) and the ion pressure equation( 12(L ,.)

Lpy= [ aa {wyg@ ~ (w2 - §s@®@ium>}ua - [<Aw> - §E§—;<Am> ,

C o~ (27)

2i= [ dw[<uyux>+<uy% A+ )~ VA i+~ 0)

G

ﬁé\
=5 APN (28)

Opey | s<plux>]uo+ 2En V10 e+ i )

(29)

The energy inteégrals are accompanied by an equation for the mean E x B flow, which is
obtained ver?ging the vorticity equation (12a) over the periodic y-direction making use
ﬂ

of thejion pr ssure equation (12b)

. 9P 0 2.0 20 v
é‘?\%“x“y W)~ 55 0iay Pe) = 58 a Pl = gy thed [ i

(30)

where boundary terms were neglected. Integrating the mean flow equation in the x-direction
shows that no mean flow is generated without external sources. The time-evolution of the

energy integrals and the mean flow equation are principal results of this paper.

11
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Publishin gllirst, we note that the energy integrals and the mean flow equation reduce to the well-
known system of equations in two-dimensional interchange driven convection'* in the limit of
constant ion pressure. Specifically, all ion pressure dependent terms vanish, Fy = 0, and the
time-evolution of the mean flow is governed by two effects: the divergence of the Reynolds
stress tensor marked ”a”, which describes radial transport of az}iéuthal momentum, and
collisional viscous damping marked ”e”. These two effects are ac anied by corresponding
energy transfer terms in the mean flow energy equation 27., C ﬂ'jonal dissipation damps

the mean flow energy through the term "E”. The Reynol ressyproduction terms marked

”A” in equations (27) and (28) yield a energy transfer ‘?

Sy
E x B kinetic energies. From the energy integrals it i evidelst that the mean flow energy FEj

eenr<the mean and fluctuating

is only altered by the Reynolds stress when the miean flo sheared wuj, # 0. The condition
of a sheared mean flow is necessary but not s men@y expanding the electric potential
into an infinite Fourier series in the periodicw n, the x —y component of the Reynolds

stress tensor can be written as

.

(g = kyldr, 105, (31)

N, =1
where |¢y, (7,t)] and 64(x, 1) en&\q dially varying amplitude and phase, respectively,
and ), = 0,04. The mean flow ertergy™is therefore only altered if the mean flow is sheared and

if the phase of the electr ta’ﬁgSZ)tential varies radially. The thermal and fluctuating energies

narked "F” whose origin is magnetic field inhomogeneity.

This energy transfer {:rigt}s fluctuating radial transport of thermal energy. The spectral

representation (%:h interchange drive term is
Elpeus) = €Y 2k, |bn, |[per, | sin(dy — 6, (32)
£ ky=1
demofistratin at the direction of the energy flux is determined by the phase difference
betwge le(:)ric potential and electron pressure fluctuations. Note that there is no direct
energy t?jansfer between the integral of the electron thermal energy E, and the mean flow
?ﬂﬁrQ o; the only path for thermal energy to the mean flow energy goes through the
tuating energy L.
When the assumption of constant ion pressure is relaxed, additional mean flow sources
emerge. First, the Reynolds stress in the mean flow equation (30), marked ”a”, is accompa-

nied by a diamagnetic Reynolds-stress-like term, marked ”b” and corresponding production

12
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Publishitegins marked "B” in the mean and fluctuating energy integrals equations 27 and 28. Like
the Reynolds stress production term, a finite energy transfer by the diamagnetic Reynolds
energy transfer term requires a sheared mean flow uj # 0. The spectral representation in

the y-direction

key >0

Op; - ’ :
<uya_1;> = 2k, {Sln(% — Op, ) |Dik, || Or, | + cos(dg — 56/)ka5¢} (33)

shows that the diamagnetic Reynolds stress and the correspon production term may
modify the mean flow both when ¢ and p; are in and out6f phase:

10 d?}f\the mean flow does not

urthermore, the ability

of the diamagnetic Reynolds stress production ter

require that the phase of the electric potential is radially in%omogeneous as is required for

the standard Reynolds stress. We also note that i@: 37,

const., which is an approximate

steady state solution to the vorticity equation 12a, then’the Reynolds and the diamagnetic

Reynolds stresses cancel.
In addition to the diamagnetic Rey l%s, two transfer terms marked ”¢” and ”d”
enter the mean flow equation (30) nt

terms differ from the standard arg(ia agrhic Reynolds stresses because of their ability to
i

modify the mean flow rely o®) eneous magnetic field & # 0. The corresponding

ion pressure is non-constant. These transfer

energy transfer terms, marked ” C%and”D” in equations (27) and (29), couple the mean flow
energy Fy and the resi uamigy E. In the constant ion pressure limit, the fluctuating
kinetic energy and therefore also instabilities can only grow because the fluctuations can
feed on the thermél energy ghirough the interchange drive term marked "F”. When the ion
pressure is notc n%s&\an additional energy transfer emerges. The term marked "H” in the
residual ener libcegral equation (29) allows energy exchange between the residual energy
and the fen thermal energy. In many respects the generation of mean flows in interchange

- £

drived turbulemge is therefore potentially fundamentally different when ion temperature

fi

dynamies_is %ken into account. The energy transfer channels are schematically depicted in
g{l.s\fe note that the appearance of the terms "C” D", and "H” in the energy integral

?q’aions and the terms "¢” and ”"d” in the mean flow equation is a direct consequence of
cousistently keeping the first order drifts in the ion density and in the ion pressure equations.
The terms in equations (28) and (29) marked "G” yield a energy transfer between the
fluctuating £ x B energy and the residual drift energy. We do not analyze these terms

further in this paper. A detailed analysis most likely requires that the residual drift energy
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Figure 1. Diagram illustrating the energy transfer channels between t

the corresponding energy transfer terms label the arrows.

—-—

is split into mean and fluctuating components. We leave th analysis for future work.
The term marked ”d” in the mean flow equat on 30 mates from the finite compres-

sion of the F x B drift in the ion pressure equation ]& The spectral decomposition
2 4 & \# .
38(pius) = € ke, Wik, | sin(0g — dp,) (34)

shows that a finite phase dlfference

e\n the potential and ion pressure fluctuations

is required for modification of th n ow. It is interesting that this term apart from a
factor ”2/3” shares the same 1 orm as the interchange drive term "F” in the energy
integral equation (29), hence y are always simultaneously active. The direction of
the energy flux by t responding energy transfer terms marked "D” in Eqgs. (27) and
(29) is determlned pha shift and the mean flow shear.

Finally, we ze transfer mechanisms described by the terms "C” and "H” i
the energy i eg tlons (27) and (29) and the corresponding term ”c” in the mean

A remarkable feature of these terms is that they are independent of
part of the £ x B drift, and hence may alter the mean flow when £ x B -
ctuaﬁ')ons vanish u, = u, = 0. As illustrated in Fig. 1, ion thermal energy & can be
the mean flow energy & via the residual energy £, by these transfer channels.

Comapon' to all these terms is the appearance of

o o
f(pi aye - _5 Z 2k |peky||pzky| Sln( De 5177;)7 (35>

ky=1

showing that they are only active if the phase shift between electron and ion pressure fluc-

tuations is finite. It is important to keep in mind that these terms vanish in the isothermal
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PUbliShih]gl t; electron or ion temperature fluctuations are required. The direction of the energy
flux through the transfer channel "H” between the ion thermal energy & and the residual
drift energy £ is solely determined by the phase-shift 4, —d,,. Specifically, energy is trans-
ported from the ion thermal energy to the residual drift energy when sin(é,, — d,,) < 0,

and is maximal when §,, — 0,, = —m/2. For the residual drift ener?{ to flow simultaneously

from the residual drift energy £, to the mean flow energy &, t learing rate uyg, entering
the transfer term 2/3&u((p;0,p.) marked ”C” in equations (27) (29), must be negative
uy < 0. The neglected higher order terms in the pressur, %\XQS 12b) and (12¢) yield
additional terms in the EF x B mean flow energy equat‘i& icheean be found in appendix
B. ks

Recall that the results presented in this sect@ara)derived using the simplified model
given in Eqs. (12a)-(12c), where some higher order fefms in the pressure equations were
neglected (see appendix A). Before procee '%te that our results are not qualitatively
altered if all higher order terms were re & shown in appendix B: the energy theorem
derived in section II A and the mea ﬂog equation (30) are not changed. Two coefficients
in the £ x B mean flow energy \iti (?7) change form 2/3 to 5/3, and two additional
small terms are added. Furthemmore, equation governing the particle density must be
added to the model. All thi;&\srered, the simplified model provide the same results,

permits a clear expositi n%signiﬁcantly simplifies the algebra in the derivations.

IV. LI E;} NALYSIS

-

clated ps

em ure dynamics is taken into account. The analysis is carried out by means of linear

— V.
In %efjion we investigate the additional terms, beyond the Reynolds stress and asso-
0

uction term, in the mean flow and energy integral equations which arise when ion

d @asi—linear analysis. This approach allows us to estimate under which conditions these
additional terms are active and to some extend to estimate their magnitude and whether

they act as to inhibit or enhance mean flows
Neglecting dissipative effects assuming a local plane wave solution exp(ik - © — iwt) to

15
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Publishitig model equations (12a)-(12c), the linearized equations are

wk? (¢r + pix) + Eky(per + pire) = 0, (36)
—g&)}?ik + ¢k/€y(g/€z — &) + Eky(Per + pik) = 0, (37)
b uhy (o~ €) (33)

with the dispersion relation

4 2 4 1
A [}P + AR — g) + (—R k:2 (R =0, (39)
where \ = E%’ Ri = Rif/&, Re = Ke/&, and k; and deno? he ion and electron inverse
profile gradient length scales, respectively. Be81d he t solution A = 0, the dispersion

relation has the solutions

y

K@L e %>. (40)

2

\

The unstable part of the solution for h&cg A) > 0, is plotted in Fig. 2 for various param-
N

eters. Instability requires that &; >\/3. Notice the well-known ion FLR stabilization®t

1\

( Ri

Oblvlk
Z&I

/

A:

0
0.0 0.2 0.4 0.6 0.8 1.0

heﬁgke and K;, respectively. By comparing the red and green curves, we see the effect of ion

FLR stabilization.

by the first term in the radicand in Eq. (40). The stabilizing effect is clearly illustrated by

the blue and green curves in Fig. 2 which have the same interchange drive ”k; + £.” but
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Publishiwficn £, > &; (blue) the growth rate is significantly higher than when £, < &; (green). Only
for very low k, (not visible in Fig. 2) the growth rate of the green curve exceeds the blue
curve.

The linear fluctuations are related by

Pk _ Wk’ i(6p—6p.) _ 3)‘(3)‘ _ 2) /\
== 2 eN\% %) — — — (41)
pik P 3A(BR; — 2) + 2(3Rg= 2)\

el 5y (35~ Q)

B 42
Pk |pil 3A(3R; — 2) + zbgg\ugk (42)
From these expressions the corresponding phase shifts n‘bec\alc lated (see Fig. 3). As

Figure 3. Linear calculation of phﬁhtﬁe’ﬁveen a) ion pressure and electric potential fluctu-

ations, b) electron pressure ande electgic'potential fluctuations, and c¢) ion and electron pressure

fluctuations as functions of k| . \

expected the phase @een pressure and electric potential fluctuations plotted in
Figs. 3a and 3b s z%\t /‘g interchange drive term in Eq. (28) according to Eq. (32)
transforms theré1 nergy.into fluctuating energy when the waves are unstable, see Fig. 2.
We also obs V%}hhe cases where the inverse profile gradient length scales kK, = 1/3

3 (red) are below unity, the direction of the energy flux is reversed even

thoughtthe veglare unstable.

For\the abalysis of the diamagnetic Reynolds stress given in Eq. (33), we employ the
ﬁ
quasi-linear approximation. By expressing the ion pressure fluctuations in terms of the

,%te ial fluctuations, we get
N

(u;;a%p» =-2) ky(|¢ky|25</¢> Re {pi’“y] i %(|¢ky|2)llm [%] > )

0 b, Pr,

The first term (see Eq. (31)) equals the Reynolds stress times the real part of the ratio of the

ion pressure to the potential. The magnitude of the first term in the diamagnetic Reynolds

17
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Publishistgess relative to the standard Reynolds stress is therefore simply given by the magnitude
of Re[pir,/dr,]- In the quasi-linear treatment this factor can be calculated using Eq. (41)
employing the solution given in Eq. (40). When the absolute value of Re[p;/dx]| exceeds
unity, the first term in the diamagnetic Reynolds stress exceeds the standard Reynolds
stress and equivalently the diamagnetic Reynolds stress productio%erm dominates. Quasi-
linear calculations of Re[p;,/¢k] as a function of k, and k; ar owisin Figs. 4a and 4c

for k. = 1 and R, = 10, respectively. In both cases the diama ic Reynolds stress only

0.00
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—-0.60
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-0.90

-1.05

0.00
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-0.75
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Figure 4.%Comparison of diamagnetic and standard Reynolds stress. When the absolute value in
a

nd (c) is above unity, the first term in the magnitude of diamagnetic Reynolds stress given

in\Eq. (43) exceeds the standard Reynolds stress. In the white regions (upper right corner in all

plots) the solutions are stable. Specifically, the plots show quasi-linear calculations of Re [7;;:} for

(a) ke =1 and (c) ke = 10, andIm[d)k] for (b) ke =1 and (d) k. = 10.

18


http://dx.doi.org/10.1063/1.4985329

! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishi:mtg: ins significant values relative to the standard Reynolds stress at intermediate values of
k), and increase with ;. This behavior is expected since the diamagnetic Reynolds stress
is an FLR effect, which is expected to become more important as wavelengths and gradient
length scales approach ion gyroradius length scales. Steepening of the background electron
pressure gradient k. decreases the diamagnetic Reynolds stress (/elative to the standard
Reynolds stress.

The magnitude of the second term of the diamagnetic Regnoldg stress given in Eq. (43)
depends on the radial gradient of the fluctuating kinetic® QMd is therefore only able

to drive or damp the mean flow if the fluctuating kinel:ic ergy«is radially inhomogenous
s(J¢x?)" # 0. The magnitude of the fluctuating kipetic eslergy is not readily accessible
through quasi-linear calculations and must be obtfiined viamen-linear numerical calculations.

However, the fluctuating energy is multiplied b‘)ﬂpl’:?, and hence regardless of the radial

L7

structure of the fluctuating kinetic energy h\%xqs; e finite for this part of the diamagnetic
- ; Pik - L

Reynolds stress to play a role. Quasi-1 ew ations of Im [ @ﬂ for kK, = 1 and k., = 10

are shown in Fig. 4b and d, respectigely. oth cases the magnitude is small for k£, < 0.1

for all values of ;. For k, > Ol\ln d”fj\ is of order unity for most values of &; in the

unstable region.

These calculations should beﬁ?xeted with caution for k; = 0.5 because the model is
not valid here unless T; 7?.\§alculations for wavelengths comparable to the ion gyroradius
can be calculated usi g%% d or gyrokinetic theory. Nonetheless, the calculations show
that the diamagnétic ,e:yn;flds stress can be important in regions with steep background

ion pressure gradients,such as in the edge plasma or in internal transport barriers.

sider the terms marked ”c¢” and ”d” in the mean flow equation (30)

resentations given in Eqgs. (34)-(35) show that finite contributions by these

uiré that the sines of the phase shifts between ion pressure and electric potential
asgvell a§ between ion and electron pressure fluctuations are finite. Figures 3a and 3c show
‘ﬁ,&t;\according to linear theory, these terms yield finite contributions for a wide range of
parameters. This observation entails that these mechanisms must be taken into account in
the description of mean flows. Specifically, the linear results shown in Fig. 3c reveal that
the energy transfer term "H”, between the ion thermal energy and the residual energy, for

most parameters yields an energy transfer from the residual to the ion thermal energy except
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Publishiwlen electron pressure profiles are nearly flat. The quasi-linear analysis does therefore not
indicate the existence of an energy flux from the ion thermal energy via the residual energy

to the mean flow energy which bypasses the fluctuating kinetic energy.

V. DISCUSSION AND CONCLUSIONS /\

N

In this paper we have investigated the influence of ion ts%ure fluctuations on az-
ite

imuthal £ x B mean flows in two-dimensional, electrostatic, 1ange driven convection.

Mean flows perpendicular to the magnetic field are, to le 'nhder, composed of £ x B
and diamagnetic parts. Since the capability of the 'amagijetic drift to transport plasma
over macroscopic distances is inferior compared o the B drift, only the strength and

shear of the E x B mean flow determines the ability o@rpendicular mean flows to suppress
turbulence in transport barriers. Our inve tig*:\%mvv that in the presence of ion pressure
fluctuations there are mechanisms bey d@n ard perpendicular £ x B Reynolds stress
O‘q%&p&kﬁcaﬂy, the standard Reynolds stress is accom-

panied by a diamagnetic Reynolds stréss! Quasi-linear analysis indicates that the standard
and diamagnetic Reynolds stregsesar ally important. In addition to the diamagnetic
Reymnolds stress we identify tv&«\ec\lh‘nisms capable of modifying F x B mean flows. Both

mechanisms rely on magheticield inhomogeneity. The first mechanism takes the same form
C
£

capable of modifying £ x B mean fl

as the interchange ewergy nge term, which is responsible for feeding free energy from
the free thermal{!ner intg £/ X B fluctuations in interchange driven instabilities. This
mechanism a wchange energy exchange term are therefore simultaneously active.
The secon (Qnism relies on phase shifted ion and electron temperature perturbations
and is infghat! respect unique because electric potential fluctuations are not needed. This
mechdnisin preyides energy transfer between the ion thermal energy and the mean flow
energy egmpletely bypassing electric potential fluctuations. However, quasi-linear analysis
shows th&t the direction of the energy flux inhibits mean flows for most parameters.

WQ% principal result of this paper is to demonstrate that ion pressure fluctuations also
coutribute to the generation and sustainment of £ x B mean flows. These additional mecha-
nisms are included in gyrofluid and gyrokinetic models, but are hidden in their mathematical

formulation. Only by considering these additional mechanisms explicitly, we will be able to

understand F x B mean flow dynamics and compare our findings with experiment where
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Publishii® B mean flows are key ingredients in transport barriers.

Our analysis was carried out in a simplified two-dimensional drift fluid model describing
interchange driven turbulence in the absence of dynamics parallel to the magnetic field.
Naturally our results cannot readily be generalized to a toroidal configuration where par-
allel dynamics plays an important role. In such a more realisﬁz ctting several known
mechanisms®® such as the perpendicular/parallel Reynolds str s,@e magnetic flutter con-

tribution, and the Maxwell stress can couple turbulence andymean _flows, but we are also

convinced that new mean flow mechanisms similar to these p here exist. It is there-

sen
fore evident that e.g. the phase shifts between the ionénd e ;‘r?pressures and the electric
potential fluctuations will change and that the quasi-linear résults presented here will be al-
tered. Nonetheless, the mechanisms for driving@x mean flows derived in this paper
will persist in a more complete description. S‘\%ﬂnﬁ’ our analysis points out that the
paradigm of Reynolds stress driven mean Nl omplete and must be supplemented by
other mechanisms apparently equivale!\ ble of modifying £ x B mean flows.

The existence of mechanisms beyo \?‘IP\R ynolds stress capable of driving £ x B mean
flows, could provide an adequate anagion for the contradictory findings in experiments

trying to estimate the import turbulence driven mean flows!?26:33:3444 = A]] previous
o onl

experimental investigati account for the pure £ x B Reynolds stress. Other

d
n%‘10\7\/ generation, including the ones derived here, are not
considered in t}y erifnents; but they must be accounted for (or proven negligible in a
0

mechanisms for F X

£
ﬂlxn der to settle the ongoing discussion on the role of the turbulence

) in
driven meanQﬂn transport barriers.
£
- 4
)
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PublishiAgpendix A: Approximations to the pressure equations

In this appendix we describe the approximations made in the electron and ion pressure
equations (7c¢) and (7b) that lead to the reduced model given in Egs. (12a)-(12c).

First, in both pressure equations (7b) and (7c), we neglect thedorder ¢ compressional
contributions 3/2p,V-ug in the 3/2V-(p,ug) terms. The advectio{p s are evaluated with

: %a. This approximation

a constant magnetic field magnitude: 3/2ug - Vp, ~ 3/ 23%

g

leaves the energy theorem unchanged, and shown in Sec. ILA, the exehange between E x B

energy and the thermal reservoirs is mediated®® by the Q&o\mp ession terms p,V - up.
These energy exchange terms are therefore retained. [

Advection of pressure by the diamagnetic drif mr&@ e to the "diamagnetic cancel-
lation”:

~

>
;v * (Pa¥pa) + PaV - Upa % ‘gv X (qu) - V(paT) (A1)

rder €2 and since it does not influence the

The curvature term on the right hand é&
conservation of energy we neglect a“?nag tic drift terms in the pressure equations.
NG

.
Lastly, all terms including t olarization and gyroviscous drifts in the ion pressure

equation are of order €. A&;f\(n lect the divergence terms %V : (pi[upi + um]) as

they have no influence on the energy, theorem, and we keep the compressional contributions
piV - (up, + ;) which e% energy exchange between the ion thermal energy and E x
B kinetic energy?6 The thiuflayer approximation must also made here (see Eq. (9)) in
order to conservg .ener I{ other words, we must make the same approximations to the
first order drift ‘mquationsm. This requirement is also necessary for establishing the
correspondénceetween drift fluid and gyrofluid models*'. The resulting pressure equations
used for tHegudigs'in this paper are given in Eqgs. (12a)-(12c).

)

gﬁ—B
ppen : Energy conservation mean flows in full 2D interchange model

)

Yn\t e following we describe the implications of retaining all the second order terms in
t

pressure equations which were considered in appendix A. Specifically, we show that: a)
the mean flow equation (30) is unaltered, b) the energy theorem Eq. (16) and the energy
transfer channels in Eqgs. (19)-(21) are the same, and c¢) all energy transfer channels in the

E x B mean flow energy equation (27) remain, but with modified prefactors. Furthermore,
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Publishi:mrg‘ \dditional transfer term due to advection of ion temperature by the ion polarization drift
is added.
When all second order terms are retained in the electron and ion pressure equations the

2D interchange model in slab geometry and Gyro-Bohm normalized units (see Eq. (11)) is

given as:
D
En—n{ (Bla)
d *
Ve (2Vie) : (B1b)
3D 5 0¢ 5 _0pP 5 0
C Ty Sl P P e : B1
5 Dl 2pzfay 2£8y ~+ 2pz§ay(pe +pi (Blc)
5%29:6— (B1d)

! -
where we introduce the material derivative‘ﬂ'th‘ -constant magnetic field

D \1
= 55\ 6.1 (B2)
at

The varying magnetic field is dig¢tated\sy ehergy conservation. The diamagnetic pressure

and heat fluxes in the ion an el‘m ssure equations are the only non-collisional terms

which explicitly depend on the%de density n. Retention of these higher order terms

demands that the parti eﬂ?xsity equation is added to the model. Note that in comparison
)

to the applied mode (12b), the prefactors on the {-dependent terms are altered.

»no

Furthermore, the filll mgdel also includes the advection of ion pressure by the ion polarization

drift; last ter ont}h{gh hand side of (Blc). This term is neglected in existing drift fluid

models!®:32,3%;

a. n flow equation The E x B mean flow equation (30) is derived from the vorticity
equat@a Since the vorticity equation is not changed, nor is the £ x B mean flow
e 10

b&ergy theorem The energy theorem Eq. (16) is also left unchanged. The theorem is

7 —¢” times the vorticity

y integrating: i) the pressure equations (Blc)-(B1d) and ii)
equation (B1b), over the domain. Summation of the integrals yield the desired result.

The electron pressure integral is only modified by the diamagnetic term (last term on
the left hand side of Eq. (B1d)). Since the slab geometry is periodic in the y-direction

this term trivially vanishes when integrated over the 2D domain. This also holds true for

23


http://dx.doi.org/10.1063/1.4985329

! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishi‘ri‘g corresponding term in the ion pressure equation. The remaining new terms in the ion
pressure equation (Blc) also vanish since they form divergence terms which only yield surface
terms, which are neglected in the derivation of the energy theorem Eq. (16). For instance

the ' X B terms are combined using

_{¢7pz} ng ¢ % zuE (B?))
Similar manipulations of the polarization drift, ion pressure ) result in a divergence
term which only gives a surface contribution to the e rgy 1teg Therefore, also the

energy transfer channels in Egs. (19)-(21) remain th
c. Ex B mean flow energy An equation governing the %me evolution of kinetic energy
Eq associated with the mean E x B flow ug = @ btained by integrating the product

of (¢) times the vorticity equation (Blb):

iEo /dw [(uyuz%(uyapz —gﬁ( \ (piug) fo—(dﬁ pz) Vp; - dVM

dt A dy

‘~ (0| ) = 200,

E‘x\imean flow energy theorem Eq. (27), the standard £ x B
1

netic Reynolds stress, 7 A” and ”B”, respectively, are left

In comparison with th

Reynolds stress and#the

unchanged. The terms< C*/and "D*” have the same from as in the original equation (27)

but the coeffi i%tht&changed. The "B*” is new. It appears because the F x B drift
"

ticity equation (B1b) is evaluated with a constant magnetic field whereas

the ion pressure equation (Blc) is x-dependent B~! = By*(1 + £x).

iscrepa is an inherent consequence of the thin-layer approximation in drift fluid
dels*36 l“he term is e€p smaller than the leading order terms, see Eq. (3). Lastly, an
energy tf)ansfer channel D™ appears. This additional energy transfer mechanism is due to
T‘hﬁ e vection of ion pressure by the ion polarization drift. The drift ordering presumes that
the polarization drift is small compared with the £ x B and diamagnetic drifts and hence
this additional energy transfer term is presumed small compared to e.g. the diamagnetic
Reynolds stress "B”. Lastly, we note that the inclusion of the diamagnetic terms in the

pressure equations do not give rise to new energy transfer channels as expected.
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Publishingln conclusion, the principal result of this paper is that there are non-negligible mechanisms
beyond the standard E' x B Reynolds stress which modify the £/ x B mean flow. The neglect
of higher order terms in the pressure equations do not alter this result, the inclusion of these

terms, on the other hand, complicate the derivations and the analysis.
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