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ExB mean flows in finite ion temperature plasmas

J. Madsen,1, a) J. Juul Rasmussen,1 V. Naulin,1 and A. H. Nielsen1

Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby,

Denmark

(Dated: Monday 24th April, 2017)

The impact of ion pressure dynamics on E × B mean flows is investigated. Using a

simplified, two-dimensional, drift ordered fluid model in the thin-layer approximation,

three stresses in addition to the Reynolds stress are shown to modify the E×B mean

flow. These additional terms in the stress tensor all require ion pressure fluctuations.

Quasi-linear analysis show that these additional stresses are as important as the

Reynolds stress, and hence must be taken into account in analysis of transport barriers

in which sheared E ×B mean flows are key ingredients.

a)Electronic mail: jmad@fysik.dtu.dk
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I. INTRODUCTION

Sheared mean flows are necessary for the formation of transport barriers45 in magnetically

confined plasmas. Transport barriers are always accompanied by a sheared radial electric

field Er and an associated E × B mean flow45, which in combination with flows along

the magnetic field quench cross-field turbulent transport through decorrelation of turbulent

eddies3,7. Several mechanisms capable of driving mean flows have been suggested8, but it is

unclear whether the observed mean flows are due to a single motive force or whether they

are a result of an interplay between many mechanisms.

A particular mechanism for mean flow generation relies on the Reynolds stress tensor31. It

couples fluctuations and mean flows and hence renders turbulence driven mean flows possible.

In order to distinguish turbulence driven mean flows from equilibrium flows, turbulence

driven mean flows are often called zonal flows. Both types of mean flows can suppress

turbulence. In the fluid description the Reynolds stress originates from the advection non-

linearity in the fluid momentum equation. By separating the velocity field into mean and

fluctuating parts: u = ⟨u⟩ + ũ and averaging the momentum equation one gets for an

incompressible flow ∇ · u = 0:

∂⟨u⟩
∂t

+∇ · ⟨ũũ⟩+∇ · (⟨u⟩⟨u⟩) = L, (1)

where L represents forces, sinks, and sources. The average operation ⟨·⟩ is unspecified here

but is usually either a time-average, a flux surface average, or both. The Reynolds stress

tensor ⟨ũũ⟩ can inhibit as well as enhance mean flows, but in strongly magnetized plasmas

the approximate two-dimensional character of turbulence implies that energy is preferably

transfered from smaller to larger scales10,13,39. The energy transfer is between the kinetic

energy of fluctuations and the kinetic energy of the mean flow. Therefore, Reynolds stress

driven mean flows do not directly tap free energy but relies on conversion of free energy

into fluctuating energy by other mechanisms37. On closed magnetic surfaces in strongly

magnetized fusion plasmas, the mean convective term ∇ · (⟨u⟩⟨u⟩) is usually negligible

because gradients of the mean flow are to a good approximation perpendicular to the mean

flow itself.

When a plasma is subject to a strong confining magnetic field the dynamics is strongly

anisotropic. Charged particles are approximately trapped on magnetic field lines along which

they flow unhindered. When studying mean flows it is therefore convenient to apply models

2

http://dx.doi.org/10.1063/1.4985329


where this anisotropy is exploited a priori. The strong confining magnetic field implies

that the magnetic dipole moment associated with the Larmor orbits of charged particles

around magnetic field lines is an adiabatic invariant1. The invariance can be used in a

dynamical reduction of the governing equations which lowers the computational costs by

orders of magnitudes5. This is exploited in turbulence models which normally only consider

dynamics on time scales longer than the inverse ion gyrofrequency5,17,18. In the resulting

equations the strong anisotropy imposed by the strong magnetic field appears explicitly.

Velocities are split into perpendicular and parallel parts. In the direction perpendicular to

the magnetic field advection is in most cases dominated by the E×B -drift: uE = E×B/B2.

Advection by other perpendicular fluid drifts associated with particle drifts such as the grad-

B, curvature, and polarization drifts are inferior in comparison to the E ×B advection, but

they are essential for the turbulence because the corresponding currents are dominant in the

quasi-neutrality constraint ∇·J = 0. In drift fluid models, which are used in this paper, the

grad-B and curvature drifts and the magnetization current are contained in the diamagnetic

drift uD
12. As in gyrokinetic5 and gyrofluid models18, the diamagnetic and E × B drifts

are assumed to be of the same order of magnitude. However, since advection of all fluid

fields by the diamagnetic drift cancels in all moment equations43, the diamagnetic flow is not

responsible for transport over macroscopic distances. Therefore, it is only the mean E × B

flow which is relevant in studies of decorrelation of turbulent eddies by perpendicular mean

flows.

In this paper we investigate how ion pressure dynamics influences E × B mean flows.

Reynolds stress driven mean flows have been studied extensively9 and studies including ion

pressure dynamics are numerous6,11,20,28,36,38,39. A common feature of these studies is that

they do not consider ”pure” mean flows but rather mean flows with multiple components. In

gyrokinetic and gyrofluid treatments6,11,20,28,38, the results concern mean flows, actually mean

gyro-center momentum densities, in gyro-center coordinate space. Gyro-center space is a

mathematical construction which provides tractable equations describing the dynamics down

to gyro-radius length scales. The use of gyro-center coordinates is motivated by the notorious

tedious expressions20,42 associated with gyro-radius length scale dynamics entering models

expressed in standard coordinates. However, gyro-center coordinates are by construction

not only functions of position and velocity but also of the electromagnetic potentials. To

illustrate this point we express the zeroth order gyro-center moment, the gyro-center density
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N , in terms of physical quantities such as the particle density n, the ion scalar pressure pi,

and the electric potential ϕ. In a quasi-neutral plasma ni = ne we get23,24

Ni = ni −∇2
⊥

(
pi

2miΩ2
i

)
−∇ ·

(
ni

BΩi

∇⊥ϕ

)
(2)

where only terms to second order in k⊥ρi are retained. Here, k⊥ is a characteristic inverse

gradient length scale,ρi is the ion gyro-radius, pi is the ion pressure, and Ωi = qiB/mi is the

ion gyro frequency, where qi and mi are the ion charge and mass, respectively. The perpen-

dicular projection of the gradient operator is defined as ∇⊥ = −b̂×(b̂×∇), where b̂ = B/B

is a unit vector parallel to the magnetic field B. Results formulated in gyro-center coordi-

nates are therefore only directly relevant for the dynamics of gyrocenters, which is of course

highly relevant, but in order to translate these results to measureable quantities the results

must be transformed to well-known physical variables, a process which is tedious20,41. In

low-frequency fluid models17 another but related issue appears. Here, the dominant perpen-

dicular drifts are the fluid E×B and diamagnetic velocity fields. In previous works28,29,36,39

only the momentum and mean flow equations for the combined E ×B and ion diamagnetic

flow were considered. This approach is problematic because the mean flow then includes the

diamagnetic flow, which is not responsible for transport on the macroscopic length scale.

The main objective of this paper is to investigate the E × B mean flow and hence to

disentangle the E × B and ion diamagnetic parts. Considering the pure E × B mean flow

significantly complicates the governing equations. We have therefore deliberately chosen a

paradigmatic, electrostatic drift fluid model in two-dimensional slab geometry, where dy-

namics along the magnetic field has been omitted. The model is presented in Sec. II. Even

in this simplistic setup we show in Sec. III that the E×B mean flow can be modified by four

terms: i) The pure E × B Reynolds stress ⟨ũEũE⟩ and ii) a diamagnetic Reynolds stress39

proportional to ⟨uy∂ypi⟩, where the uy denotes the ”azimuthal” component of the E × B

drift. iii) We also show that E × B mean flows may be driven by a term proportional to

⟨ξpiux⟩ in the stress tensor which is only finite when the magnetic field is inhomogeneous

ξ = 1/R ̸= 0, where R is the major radius. iv) Lastly we demonstrate the existence of a com-

ponent proportional to 2/3⟨ξpi∂ype⟩ of the stress tensor, which does not require E×B drift

fluctuations. The corresponding energy transfer terms, also commonly denoted production

terms, are analyzed and conditions for enhancement and attenuation of E × B mean flows

for the individual energy transfer channels are determined. Next, in Sec. IV we proceed
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with a quasi-linear analysis which reveals that that none of the four mean flow generation

mechanisms are negligible. Lastly, our results are summarized and discussed in Sec. V.

II. MODEL

This study uses an electrostatic drift fluid model15,17,22,36 well-suited for studies of low-

frequency turbulence in strongly magnetized plasmas particularly in the edge and scrape-off

layer regions. The derivation of the model relies on the drift ordering and hence on the

existence of the small parameters:

ω

Ωi

∼ ϵ ≪ 1,
u

cs
∼ ρs

L⊥
∼ δ ∼

√
ϵ,

ρs
LB

∼ ϵB ∼ δ3. (3)

That is, the model is only applicable to studies of low-frequency dynamics where the char-

acteristic frequency ω is much smaller than the ion gyrofrequency Ωi = qiB/mi. Here, B

is the magnitude of the magnetic field, and qi and mi denote ion charge and mass, respec-

tively. Further, the ordering presupposes that the fluid velocity u is smaller than the ion

sound speed cs =
√

Te/mi, where Te is the electron temperature, and that the characteristic

gradient length scale L⊥ is longer than the hybrid ion gyroradius ρs = cs/Ωi. Finally, the

gradient length scale LB of the magnetic field is described by the small parameter ϵB.

An advantage of the drift ordering is that algebraic expressions for the perpendicular

part of odd fluid moment equations can be derived by a perturbative expansion in the small

parameters. For instance, in a simple quasi-neutral plasma (n = ne ≃ ni), the terms on the

right hand side of the momentum equation

nma(∂t + ua · ∇)ua +∇ · πa = −∇pa + qan(E + ua ×B) (4)

dominate and balance to lowest order under drift ordering. Here, the subscript a is a species

label, pa is the scalar pressure, E = −∇ϕ is the electric field, ϕ is the electrostatic potential,

B is the magnetic field, and πa denotes the gyroviscous tensor. Therefore, the zeroth order

perpendicular drifts are given as:

u⊥,0a = uE + uDa =
b̂×∇ϕ

B
+

b̂×∇pa
qanB

. (5)

By expanding the perpendicular velocity in ϵ, the first order drifts, that represent the small

terms on the left hand side of Eq. (4), become:

u⊥,1 = up + uπ =
1

Ω
b̂× d

dt
u+

b̂×∇ · π
qnB

. (6)
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The zeroth order drifts are the familiar E × B -drift uE and the diamagnetic drift uD,

and the first order drifts are the polarization drift up and a gyroviscous drift uπ. Inertia is

described by the polarization drift. The dominant effect of the gyroviscous drift is to cancel

the advection of momentum by the diamagnetic drift. This cancellation is in the literature

refered to as the gyro-viscous cancellation2,4,17,22,42. The first order drifts in u⊥,1 depend on

the species mass, and hence only the ion drifts are retained.

In this study we investigate the influence of ion pressure dynamics on the generation, sus-

tainment, and damping of mean flows. For this purpose and for the convenience of exposition

we neglect the time-evolution of the parallel momentum and consider only the drift ordered

equations governing the time evolution of vorticity and electron and ion pressure22,27,30:

∇ · (nupi) +∇ · (nuπi) +∇ ·
(
n(uDi − uDe)

)
= Λw,

(7a)

3

2

∂

∂t
pi +

3

2
∇ ·

(
pi[uE + uDi + upi + uπ]

)
+ pi∇ · [uE + uDi + upi + uπ] +∇⊥ · q∗

i = Λpi ,

(7b)

3

2

∂

∂t
pe +

3

2
∇ ·

(
pe[uE + uDe]

)
+ pe∇ · [uE + uDe] +∇⊥ · q∗

e = Λpe ,

(7c)

where the diamagnetic heat flux is given as

q∗
a =

5

2
pa

b̂×∇Ta

qaB
. (8)

The terms Λw,Λpi and Λpe on the right hand sides of Eqs. (7a)-(7c) represent, unspecified,

parallel dynamics, collisional effects, and sources and sinks. We restrict the model to a local

2D slab geometry (x, y, z) at the outboard midplane with the unit vector ẑ aligned with the

inhomogeneous magnetic field B = B(x)ẑ. Periodic boundary conditions are invoked in the

y-direction.

The vorticity equation (7a) is derived from the quasi-neutrality constraint ∇ · J = 0

using the electron and ion continuity equations (not shown here). The diamagnetic drift

represents the grad-B and curvature drifts, and diamagnetism due to gyration, which do

not contribute to any particle transport over macroscopic distances when the magnetic field

is constant. Therefore, all terms in the vorticity equation are of order ϵ2 despite that the

diamagnetic current is of order ϵ. In the vorticity equation (7a) we make the thin-layer
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approximation22,35,48. The approximation neglects particle density variations in the polar-

ization and gyroviscous fluxes in the vorticity equation. The approximation resembles the

Boussinesq approximation21 in neutral fluid dynamics and is commonly invoked but is only

strictly valid in regions with small particle density variations. Explicitly, the polarization

and gyroviscous fluxes in the vorticity equation are approximated as22

∇ · (nupi) +∇ · (nuπi
) ≃ −∇ ·

[
n0

Ω0

(
∂

∂t
+

B

B0

uE · ∇
)(

∇⊥ϕ

B0

+
∇⊥pi
qin0B0

)]
(9)

where n0, B0 and Ω0 = eB0/mi are characteristic, constant values of the particle den-

sity, the magnetic field, and the ion gyrofrequency, respectively. Here, the magnetic field

is taken constant everywhere for two reasons: first, under drift ordering the variation of

the background magnetic field in our local domain is minute. Secondly, energy conserva-

tion in models making the thin-layer approximation requires that the magnetic field in the

polarization and gyroviscous fluxes is kept constant22,39. The absence of advection by the

diamagnetic drift in equation (9) is due to the gyro-viscous cancellation2,4,17,22,42. By in-

spection of Eq. (9) we also see that the vorticity equation in fact governs the time evolution

of the magnetic-field-aligned components of the E × B and ion diagmagnetic vorticities:

b̂ · ∇ × u⊥,0i ≃ ∇2
⊥ϕ/B0 +∇2

⊥pi/(qin0B0).

In the vorticity equation (7a) thermal energy can be transformed into kinetic energy and

hence drive instabilities and electrostatic turbulence. All terms in the vorticity equation are

of order ϵ2 including the energy transfer terms. The time evolution of thermal energy is

described by the pressure equations (7b)-(7c) where the leading order terms are of order ϵ,

but where the energy transfer terms evidently are of order ϵ2.

However, to conserve energy, energy transfer terms balancing their counterparts in the

vorticity equation are evidently of second order and must be retained to guarantee energy

conservation. Without energy conservation, instabilities and hence turbulence may grow

indefinitely in the absence of collisional dissipation, which would give incorrect saturated

states. Furthermore, turbulence driven mean flows rely on similar energy transfer mecha-

nisms, which also require energy conservation for a correct description of energy exchange

between e.g., electrostatic fluctuations and E ×B mean flows. Therefore, we retain all sec-

ond order terms in the pressure equations required for energy conservation. The remaining

terms of order ϵ2 in the pressure equations are neglected. A detailed description of the

second order terms are found in appendix A.
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To conclude, these approximations leave us with a paradigmatic, energy conserving model

describing turbulence, lowest order finite Larmor radius (FLR) effects, ion temperature

dynamics, and E ×B mean flows:

n0

Ω0

∇ ·
([

∂

∂t
+

ẑ ×∇ϕ

B0

· ∇
][

∇⊥ϕ

B0

+
∇⊥pi
qiB0n0

])
+∇ · (n[uDe − uDi]) = Λw, (10a)

3

2

[
∂

∂t
+

ẑ ×∇ϕ

B0

· ∇
]
pi + pi∇ · uE +

pi
n0

∇ · (n[uDe − uDi]) = Λpi , (10b)

3

2

[
∂

∂t
+

ẑ ×∇ϕ

B0

· ∇
]
pe + pe∇ · uE = Λpe , (10c)

where the compression of the polarization and gyroviscous drifts ”pi∇ · (upi + uπi
)” in the

ion pressure equation (7a) were eliminated using the vorticity equation (7b). Contributions

from Λw in the ion pressure equation have been absorbed in the redefined Λpi . Our model

resembles other local drift fluid models (see e.g. Refs. 35 and 48), but in these models

dependent variables are linearized e.g., pi∇ · uE ≃ pi0∇ · uE.

It is convenient to introduce the Gyro-Bohm normalization

Ωi0t → t,
x

ρs
→ x,

pe,i
pe0

→ pe,i,
eϕ

Te0

→ ϕ, (11)

which allows us to recast the model in the following simple form:

∇ ·
( d
dt
∇⊥ϕ

∗)+ ξ
∂

∂y
(pe + pi) = Λw, (12a)

3

2

d

dt
pi − piξ

∂ϕ

∂y
+ piξ

∂

∂y
(pe + pi) = Λpi , (12b)

3

2

d

dt
pe − peξ

∂ϕ

∂y
= Λpe , (12c)

where ξ = ρs
R

is the curvature constant and R ∼ LB denotes the major radius. Note that

the gyro-Bohm normalization was introduced to simplify algebraic manipulations in the

subsequent sections, but does not capture the characteristic length and time scales of the

model which are larger and longer typically25 of the order of L⊥ and c−1
s

√
L⊥LB, respectively.

The advective derivatives are defined as

d

dt
=

∂

∂t
+ {ϕ, ·}, (13)

where the E ×B -advection is written in terms of the anti-symmetric bracket

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
, (14)
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and the modified potential is defined by

ϕ∗ = ϕ+ pi. (15)

It is notable that the particle density is absent from the model if we disregard collisions.

This feature is mainly due to the thin-layer approximation.

A. Energy theorem

The conserved energy is derived in two steps. First, the electron and ion pressure equa-

tions (12c)-(12b) are integrated neglecting surface terms. Next the vorticity equation (12a)

is multiplied by ”−ϕ” and integrated again neglecting surface terms. Adding the results we

get

d

dt

∫
dx E =

∫
dxS∥, (16)

where the energy density is given by

E = Ei + Ee + E∗ =
3

2
[pi + pe] +

|∇⊥ϕ
∗|2

2
, (17)

and

S∥ = Λpi + Λpe − ϕ∗Λw. (18)

The energy density consists of the ion and electron thermal energy densities Ei and Ee,

respectively, and the ”drift energy” density E∗. The absence of the particle density n and

the magnetic field in the drift energy is a consequence of the thin-layer approximation invoked

in the vorticity equation (12a). The drift energy is a function of the modified potential ϕ∗

and can be understood as the energy associated with the E ×B and diamagnetic drifts, or

alternatively as describing the FLR corrected E ×B kinetic energy and FLR corrections to

the ion thermal energy25,41,47. The time-evolutions of the individual parts of the integrated

energy densities are given as

d

dt
E∗ =

d

dt

∫
dx E∗ =

∫
dx − ξ[pi + pe]

∂ϕ

∂y
+ ξpi

∂pe
∂y

− ϕ∗Λw, (19)

d

dt
Ei =

d

dt

∫
dx Ei =

∫
dx ξpi

∂ϕ

∂y
− ξpi

∂pe
∂y

+ Λpi , (20)

d

dt
Ee =

d

dt

∫
dx Ee =

∫
dx ξpe

∂ϕ

∂y
+ Λpe . (21)
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There are two types of energy transfer channels: i) the finite compression of the E × B

drift40, represented by the ξpi∂yϕ and ξpe∂yϕ terms, allow an interchange of thermal energy

and kinetic energy. ii) The finite compression of the first order drifts are responsible for the

second type of energy transfer channel. This effect is represented by the ξpi∂ype terms.

III. MEAN FLOWS

In this section we analyze how ion pressure dynamics influences E × B mean flows in

our two-dimensional interchange turbulence model presented in Sec. II. The analysis en-

compasses a derivation of a E ×B mean flow equation and an analysis of energy transport

between free (thermal) energy, fluctuations and mean quantities.

In this paper the averaging operation defining mean quantities is a spatial average in the

periodic y-direction direction

⟨f⟩ = 1

Ly

∫ Ly

0

dy f. (22)

Here, f is an arbitrary function and Ly is the domain length in the y-direction. The fluctu-

ating part is defined accordingly f̃ = f − ⟨f⟩. Using the vorticity equation (12a) the time

evolution36,39 of the mean and fluctuating parts of the drift energy is obtained

d

dt
E∗

0 =
d

dt

∫
dx

1

2
|∂⟨ϕ

∗⟩
∂x

|2 =
∫

dx − ∂2⟨ϕ∗⟩
∂x2

⟨∂ϕ̃
∂y

∂ϕ̃∗

∂x
⟩ − ⟨ϕ∗⟩⟨Λw⟩, (23)

d

dt
Ẽ∗ =

d

dt

∫
dx

1

2
|∇⊥ϕ̃

∗|2 =
∫

dx
∂2⟨ϕ∗⟩
∂x2

⟨∂ϕ̃
∂y

∂ϕ̃∗

∂x
⟩+ ξ(pe + pi)

∂ϕ∗

∂y
− ϕ̃∗Λw. (24)

The time evolutions of the energy integrals given in Eqs. (24),(20), and (21) reveal an energy

transfer between Ẽ∗ and the ion and electron thermal energy densities Ei and Ee by the term:

ξ(pe+pi)
∂ϕ∗

∂y
. The first term on the right hand sides of both equations, the modified Reynolds

stress production terms, yield a energy transfer between the mean and the fluctuating drift

energies. This term includes the standard E×B Reynolds stress production term u′
0⟨uxuy⟩,

where ux = −∂yϕ̃ and uy = ∂xϕ̃ denote the x and y components of the fluctuating E × B

drift, respectively, and u′
0 = ∂xu0 is the shear of the mean E ×B flow

u0 =
∂⟨ϕ⟩
∂x

. (25)

The Reynolds stress production term describes an energy transfer due to fluctuating radial

transport of azimuthal momentum in the presence of a sheared mean flow. However, due to
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the presence of the modified potential ϕ∗ in the modified production term, it is also a function

of the mean and fluctuating parts of the ion diamagnetic drift. Since no fields are advected

by the diamagnetic drift, these extra terms lack an obvious interpretation. Furthermore,

the interpretation of the drift energy density E∗ itself is not immediately obvious. Since the

particle density is advected by the E × B drift, it is more informative to consider the time

evolution of the integrated E×B mean flow energy, the integrated fluctuating E×B energy,

and the residual drift energy defined as:

E0 =

∫
dx

u2
0

2
, Ẽ =

∫
dx ⟨ |∇⊥ϕ̃|2

2
⟩, E× =

∫
dx ⟨|∇⊥pi|2

2
⟩+ ⟨∇ϕ · ∇⊥pi⟩, (26)

respectively. The time-evolution of these energy integrals are derived from the vorticity

equation (12a) and the ion pressure equation(12b)

d

dt
E0 =

∫
dx

[
⟨uyux⟩

A

− ⟨uy
∂pi
∂y

⟩
B

− 2

3
ξ⟨pi

∂pe
∂y

⟩
C

− 2

3
ξ⟨piux⟩

D

]
u′
0 − ⟨ϕ⟩

[
⟨Λw⟩ −

2

3

∂2

∂x2
⟨Λpi⟩

E

]
,

(27)

d

dt
Ẽ =

∫
dx

[
− ⟨uyux⟩

A

+ ⟨uy
∂pi
∂y

⟩
B

]
u′
0 + ξ⟨(pe + pi)ux⟩

F

− 2

3
ξ⟨pi∇2

⊥ϕ̃
∂

∂y
(pi + pe − ϕ)⟩
G

− ⟨ϕ̃
[
Λw − 2

3

∂2

∂x2
Λpi

E

]
⟩, (28)

d

dt
E× =

∫
dx ξ⟨pi

∂pe
∂y

⟩
H

+

[
2

3
ξ⟨pi

∂pe
∂y

⟩
C

+
2

3
ξ⟨piux⟩

D

]
u′
0 +

2

3
ξ⟨pi∇2

⊥ϕ̃
∂

∂y
(pe + pi − ϕ)⟩
G

− ⟨piΛw⟩ −
2

3
⟨ϕ ∂2

∂x2
Λpi⟩

E

. (29)

The energy integrals are accompanied by an equation for the mean E × B flow, which is

obtained by averaging the vorticity equation (12a) over the periodic y-direction making use

of the ion pressure equation (12b)

∂u0

∂t
+

∂

∂x
⟨uxuy⟩
a

− ∂

∂x
⟨uy

∂pi
∂y

⟩
b

− 2

3
ξ
∂

∂x
⟨pi

∂

∂y
pe⟩

c

− 2

3
ξ
∂

∂x
⟨piux⟩
d

= −2

3

∂

∂x
⟨Λpi⟩+

∫ x

0

dx ⟨Λw⟩
e

,

(30)

where boundary terms were neglected. Integrating the mean flow equation in the x-direction

shows that no mean flow is generated without external sources. The time-evolution of the

energy integrals and the mean flow equation are principal results of this paper.
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First, we note that the energy integrals and the mean flow equation reduce to the well-

known system of equations in two-dimensional interchange driven convection14 in the limit of

constant ion pressure. Specifically, all ion pressure dependent terms vanish, E× = 0, and the

time-evolution of the mean flow is governed by two effects: the divergence of the Reynolds

stress tensor marked ”a”, which describes radial transport of azimuthal momentum, and

collisional viscous damping marked ”e”. These two effects are accompanied by corresponding

energy transfer terms in the mean flow energy equation 27. Collisional dissipation damps

the mean flow energy through the term ”E”. The Reynolds stress production terms marked

”A” in equations (27) and (28) yield a energy transfer between the mean and fluctuating

E×B kinetic energies. From the energy integrals it is evident that the mean flow energy E0

is only altered by the Reynolds stress when the mean flow is sheared u′
0 ̸= 0. The condition

of a sheared mean flow is necessary but not sufficient. By expanding the electric potential

into an infinite Fourier series in the periodic y-direction, the x−y component of the Reynolds

stress tensor can be written as

⟨uxuy⟩ = −2
∞∑

ky=1

ky|ϕky |2δ′ϕ, (31)

where |ϕky(x, t)| and δϕ(x, t) denote the radially varying amplitude and phase, respectively,

and δ′ϕ = ∂xδϕ. The mean flow energy is therefore only altered if the mean flow is sheared and

if the phase of the electrostatic potential varies radially. The thermal and fluctuating energies

are coupled through the term marked ”F” whose origin is magnetic field inhomogeneity.

This energy transfer describes fluctuating radial transport of thermal energy. The spectral

representation of this interchange drive term is

ξ⟨peux⟩ = ξ
∞∑

ky=1

2ky|ϕky ||peky | sin(δϕ − δpe) (32)

demonstrating that the direction of the energy flux is determined by the phase difference

between electric potential and electron pressure fluctuations. Note that there is no direct

energy transfer between the integral of the electron thermal energy Ee and the mean flow

energy E0; the only path for thermal energy to the mean flow energy goes through the

fluctuating energy Ẽ.

When the assumption of constant ion pressure is relaxed, additional mean flow sources

emerge. First, the Reynolds stress in the mean flow equation (30), marked ”a”, is accompa-

nied by a diamagnetic Reynolds-stress-like term, marked ”b” and corresponding production
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http://dx.doi.org/10.1063/1.4985329


terms marked ”B” in the mean and fluctuating energy integrals equations 27 and 28. Like

the Reynolds stress production term, a finite energy transfer by the diamagnetic Reynolds

energy transfer term requires a sheared mean flow u′
0 ̸= 0. The spectral representation in

the y-direction

⟨uy
∂pi
∂y

⟩ =
∑
ky>0

2ky

[
sin(δϕ − δpi)|piky ||ϕky |′ + cos(δϕ − δpi)|piky ||ϕky |δ′ϕ

]
(33)

shows that the diamagnetic Reynolds stress and the corresponding production term may

modify the mean flow both when ϕ and pi are in and out of phase. Furthermore, the ability

of the diamagnetic Reynolds stress production term to modify the mean flow does not

require that the phase of the electric potential is radially inhomogeneous as is required for

the standard Reynolds stress. We also note that if ϕ = −pi+const., which is an approximate

steady state solution to the vorticity equation 12a, then the Reynolds and the diamagnetic

Reynolds stresses cancel.

In addition to the diamagnetic Reynolds stress, two transfer terms marked ”c” and ”d”

enter the mean flow equation (30) when the ion pressure is non-constant. These transfer

terms differ from the standard and diamagnetic Reynolds stresses because of their ability to

modify the mean flow rely on an inhomogeneous magnetic field ξ ̸= 0. The corresponding

energy transfer terms, marked ”C” and ”D” in equations (27) and (29), couple the mean flow

energy E0 and the residual energy E×. In the constant ion pressure limit, the fluctuating

kinetic energy and therefore also instabilities can only grow because the fluctuations can

feed on the thermal energy through the interchange drive term marked ”F”. When the ion

pressure is not constant, an additional energy transfer emerges. The term marked ”H” in the

residual energy integral equation (29) allows energy exchange between the residual energy

and the ion thermal energy. In many respects the generation of mean flows in interchange

driven turbulence is therefore potentially fundamentally different when ion temperature

dynamics is taken into account. The energy transfer channels are schematically depicted in

figure 1. We note that the appearance of the terms ”C”,”D”, and ”H” in the energy integral

equations and the terms ”c” and ”d” in the mean flow equation is a direct consequence of

consistently keeping the first order drifts in the ion density and in the ion pressure equations.

The terms in equations (28) and (29) marked ”G” yield a energy transfer between the

fluctuating E × B energy and the residual drift energy. We do not analyze these terms

further in this paper. A detailed analysis most likely requires that the residual drift energy
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Electron
thermal
energy Ee

Ion thermal
energy Ei

ExB
fluctuations

Ẽ

Residual
drift

energy E×

mean flow E0

ξpi∂ype

ξpiux

ξpeux

2

3
ξpi∂y(φ− pe)u

′

0

〈(ux − ∂ypi)uy〉u
′

0

Figure 1. Diagram illustrating the energy transfer channels between the five energy integrals in

equations (20)-(21) and (27)-(29). Energy transfer channels are shown as uni-directional arrows;

the corresponding energy transfer terms label the arrows.

is split into mean and fluctuating components. We leave this analysis for future work.

The term marked ”d” in the mean flow equation (30) originates from the finite compres-

sion of the E ×B drift in the ion pressure equation 12b. The spectral decomposition

2

3
ξ⟨piux⟩ =

4

3
ξ

∞∑
ky=1

ky|ϕky ||piky | sin(δϕ − δpi) (34)

shows that a finite phase difference between the potential and ion pressure fluctuations

is required for modification of the mean flow. It is interesting that this term apart from a

factor ”2/3” shares the same functional form as the interchange drive term ”F” in the energy

integral equation (29), and hence they are always simultaneously active. The direction of

the energy flux by the corresponding energy transfer terms marked ”D” in Eqs. (27) and

(29) is determined by the phase shift and the mean flow shear.

Finally, we analyze the transfer mechanisms described by the terms ”C” and ”H” in

the energy integral equations (27) and (29) and the corresponding term ”c” in the mean

flow equation (30). A remarkable feature of these terms is that they are independent of

the fluctuating part of the E × B drift, and hence may alter the mean flow when E × B -

drift fluctuations vanish ux = uy = 0. As illustrated in Fig. 1, ion thermal energy Ei can be

transferred to the mean flow energy E0 via the residual energy E× by these transfer channels.

Common to all these terms is the appearance of

ξ⟨pi
∂pe
∂y

⟩ = −ξ
∞∑

ky=1

2ky|peky ||piky | sin(δpe − δpi), (35)

showing that they are only active if the phase shift between electron and ion pressure fluc-

tuations is finite. It is important to keep in mind that these terms vanish in the isothermal
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limit; electron or ion temperature fluctuations are required. The direction of the energy

flux through the transfer channel ”H” between the ion thermal energy Ei and the residual

drift energy E× is solely determined by the phase-shift δpe − δpi . Specifically, energy is trans-

ported from the ion thermal energy to the residual drift energy when sin(δpe − δpi) < 0,

and is maximal when δpe − δpi = −π/2. For the residual drift energy to flow simultaneously

from the residual drift energy E× to the mean flow energy E0, the shearing rate u′
0, entering

the transfer term 2/3ξu′
0⟨pi∂ype⟩ marked ”C” in equations (27) and (29), must be negative

u′
0 < 0. The neglected higher order terms in the pressure equations (12b) and (12c) yield

additional terms in the E × B mean flow energy equation which can be found in appendix

B.

Recall that the results presented in this section are derived using the simplified model

given in Eqs. (12a)-(12c), where some higher order terms in the pressure equations were

neglected (see appendix A). Before proceeding, we note that our results are not qualitatively

altered if all higher order terms were retained. As shown in appendix B: the energy theorem

derived in section IIA and the mean flow equation (30) are not changed. Two coefficients

in the E × B mean flow energy equation (27) change form 2/3 to 5/3, and two additional

small terms are added. Furthermore, an equation governing the particle density must be

added to the model. All things considered, the simplified model provide the same results,

permits a clear exposition, and significantly simplifies the algebra in the derivations.

IV. LINEAR ANALYSIS

In this section we investigate the additional terms, beyond the Reynolds stress and asso-

ciated production term, in the mean flow and energy integral equations which arise when ion

temperature dynamics is taken into account. The analysis is carried out by means of linear

and quasi-linear analysis. This approach allows us to estimate under which conditions these

additional terms are active and to some extend to estimate their magnitude and whether

they act as to inhibit or enhance mean flows

Neglecting dissipative effects assuming a local plane wave solution exp(ik · x − iωt) to
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the model equations (12a)-(12c), the linearized equations are

ωk2
⊥(ϕk + pik) + ξky(pek + pik) = 0, (36)

−3

2
ωpik + ϕkky(

3

2
κi − ξ) + ξky(pek + pik) = 0, (37)

−3

2
ωpek + ϕkky(

3

2
κe − ξ) = 0, (38)

with the dispersion relation

λ

[
λ2 + λ(κ̄i −

4

3
) + (

2

3
κ̄e −

4

9
) +

1

k2
⊥
(κ̄e + κ̄i −

4

3
)

]
= 0, (39)

where λ = ω
ξky

, κ̄i = κi/ξ, κ̄e = κe/ξ, and κi and κe denote the ion and electron inverse

profile gradient length scales, respectively. Besides the trivial solution λ = 0, the dispersion

relation has the solutions

λ =

4
3
− κ̄i ±

√
(κ̄i − 4

3
)2 − 4k−2

⊥ (κ̄i + κ̄e − 4
3
)

2
. (40)

The unstable part of the solution for which: Im(λ) > 0, is plotted in Fig. 2 for various param-

eters. Instability requires that κ̄i+ κ̄e > 4/3. Notice the well-known ion FLR stabilization46

0.0 0.2 0.4 0.6 0.8 1.0

k⟂

0

2

4

6

8

10

Im[λ]

κ̄e =
10
3
, κ̄i =1

κ̄e =1, κ̄i =
10
3

κ̄e =
10
3
, κ̄i =

1
3

κ̄e =
1
3
, κ̄i =

10
3

Figure 2. Growth rates for different values of the electron and ion inverse profile gradient length

scales, κ̄e and κ̄i, respectively. By comparing the red and green curves, we see the effect of ion

FLR stabilization.

by the first term in the radicand in Eq. (40). The stabilizing effect is clearly illustrated by

the blue and green curves in Fig. 2 which have the same interchange drive ”κ̄i + κ̄e” but
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when κ̄e > κ̄i (blue) the growth rate is significantly higher than when κ̄e < κ̄i (green). Only

for very low k⊥ (not visible in Fig. 2) the growth rate of the green curve exceeds the blue

curve.

The linear fluctuations are related by

ϕk

pik
=

|ϕk|
|pik|

ei(δϕ−δpi ) =
3λ(3λ− 2)

3λ(3κ̄i − 2) + 2(3κ̄e − 2)
, (41)

pek
pik

=
|pek|
|pik|

ei(δpe−δpi ) =
(3κ̄e − 2)(3λ− 2)

3λ(3κ̄i − 2) + 2(3κ̄e − 2)
. (42)

From these expressions the corresponding phase shifts can be calculated (see Fig. 3). As

0.0 0.2 0.4 0.6 0.8 1.0

k⟂

−1.0

−0.5

0.0

0.5

1.0

δpi − δφ
π

a

κ̄e =
10
3
, κ̄i =1

κ̄e =1, κ̄i =
10
3

κ̄e =
10
3
, κ̄i =

1
3

κ̄e =
1
3
, κ̄i =

10
3
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−1.0

−0.5

0.0

0.5

1.0

δpe − δφ
π

b

0.0 0.2 0.4 0.6 0.8 1.0

k⟂

−1.0

−0.5

0.0

0.5

1.0

δpe − δpi
π

c

Figure 3. Linear calculation of phase shift between a) ion pressure and electric potential fluctu-

ations, b) electron pressure and electric potential fluctuations, and c) ion and electron pressure

fluctuations as functions of k⊥.

expected the phase shifts between pressure and electric potential fluctuations plotted in

Figs. 3a and 3b show that the interchange drive term in Eq. (28) according to Eq. (32)

transforms thermal energy into fluctuating energy when the waves are unstable, see Fig. 2.

We also observe that in the cases where the inverse profile gradient length scales κ̄e = 1/3

(cyan) and κ̄i = 1/3 (red) are below unity, the direction of the energy flux is reversed even

though the waves are unstable.

For the analysis of the diamagnetic Reynolds stress given in Eq. (33), we employ the

quasi-linear approximation. By expressing the ion pressure fluctuations in terms of the

potential fluctuations, we get

⟨uy
∂

∂y
pi⟩ = −2

∑
ky>0

ky

(
|ϕky |2δ′ϕRe

[
piky
ϕky

]
+

1

2
(|ϕky |2)′ Im

[
piky
ϕky

])
. (43)

The first term (see Eq. (31)) equals the Reynolds stress times the real part of the ratio of the

ion pressure to the potential. The magnitude of the first term in the diamagnetic Reynolds
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stress relative to the standard Reynolds stress is therefore simply given by the magnitude

of Re[piky/ϕky ]. In the quasi-linear treatment this factor can be calculated using Eq. (41)

employing the solution given in Eq. (40). When the absolute value of Re[pik/ϕk] exceeds

unity, the first term in the diamagnetic Reynolds stress exceeds the standard Reynolds

stress and equivalently the diamagnetic Reynolds stress production term dominates. Quasi-

linear calculations of Re[pik/ϕk] as a function of k⊥ and κi are shown in Figs. 4a and 4c

for κ̄e = 1 and κ̄e = 10, respectively. In both cases the diamagnetic Reynolds stress only
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Figure 4. Comparison of diamagnetic and standard Reynolds stress. When the absolute value in

(a) and (c) is above unity, the first term in the magnitude of diamagnetic Reynolds stress given

in Eq. (43) exceeds the standard Reynolds stress. In the white regions (upper right corner in all

plots) the solutions are stable. Specifically, the plots show quasi-linear calculations of Re

[
pik
ϕk

]
for

(a) κ̄e = 1 and (c) κ̄e = 10, and Im

[
pik
ϕk

]
for (b) κ̄e = 1 and (d) κ̄e = 10.
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attains significant values relative to the standard Reynolds stress at intermediate values of

k⊥ and increase with κ̄i. This behavior is expected since the diamagnetic Reynolds stress

is an FLR effect, which is expected to become more important as wavelengths and gradient

length scales approach ion gyroradius length scales. Steepening of the background electron

pressure gradient κ̄e decreases the diamagnetic Reynolds stress relative to the standard

Reynolds stress.

The magnitude of the second term of the diamagnetic Reynolds stress given in Eq. (43)

depends on the radial gradient of the fluctuating kinetic energy and is therefore only able

to drive or damp the mean flow if the fluctuating kinetic energy is radially inhomogenous

1
2
(|ϕk|2)′ ̸= 0. The magnitude of the fluctuating kinetic energy is not readily accessible

through quasi-linear calculations and must be obtained via non-linear numerical calculations.

However, the fluctuating energy is multiplied by Im

[
pik
ϕk

]
, and hence regardless of the radial

structure of the fluctuating kinetic energy this must be finite for this part of the diamagnetic

Reynolds stress to play a role. Quasi-linear calculations of Im

[
pik
ϕk

]
for κ̄e = 1 and κ̄e = 10

are shown in Fig. 4b and d, respectively. In both cases the magnitude is small for k⊥ < 0.1

for all values of κ̄i. For k⊥ > 0.1, Im

[
pik
ϕk

]
is of order unity for most values of κ̄i in the

unstable region.

These calculations should be interpreted with caution for k⊥ & 0.5 because the model is

not valid here unless Ti ≪ Te. Calculations for wavelengths comparable to the ion gyroradius

can be calculated using gyrofluid or gyrokinetic theory. Nonetheless, the calculations show

that the diamagnetic Reynolds stress can be important in regions with steep background

ion pressure gradients such as in the edge plasma or in internal transport barriers.

Finally, we consider the terms marked ”c” and ”d” in the mean flow equation (30)

and the corresponding terms marked ”C”,”D”, and ”H” in the energy integrals (27)-(29).

The spectral representations given in Eqs. (34)-(35) show that finite contributions by these

terms require that the sines of the phase shifts between ion pressure and electric potential

as well as between ion and electron pressure fluctuations are finite. Figures 3a and 3c show

that, according to linear theory, these terms yield finite contributions for a wide range of

parameters. This observation entails that these mechanisms must be taken into account in

the description of mean flows. Specifically, the linear results shown in Fig. 3c reveal that

the energy transfer term ”H”, between the ion thermal energy and the residual energy, for

most parameters yields an energy transfer from the residual to the ion thermal energy except
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when electron pressure profiles are nearly flat. The quasi-linear analysis does therefore not

indicate the existence of an energy flux from the ion thermal energy via the residual energy

to the mean flow energy which bypasses the fluctuating kinetic energy.

V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the influence of ion temperature fluctuations on az-

imuthal E ×B mean flows in two-dimensional, electrostatic, interchange driven convection.

Mean flows perpendicular to the magnetic field are, to leading order, composed of E × B

and diamagnetic parts. Since the capability of the diamagnetic drift to transport plasma

over macroscopic distances is inferior compared to the E × B drift, only the strength and

shear of the E×B mean flow determines the ability of perpendicular mean flows to suppress

turbulence in transport barriers. Our investigations show that in the presence of ion pressure

fluctuations there are mechanisms beyond the standard perpendicular E×B Reynolds stress

capable of modifying E×B mean flows. Specifically, the standard Reynolds stress is accom-

panied by a diamagnetic Reynolds stress. Quasi-linear analysis indicates that the standard

and diamagnetic Reynolds stresses are equally important. In addition to the diamagnetic

Reynolds stress we identify two mechanisms capable of modifying E ×B mean flows. Both

mechanisms rely on magnetic field inhomogeneity. The first mechanism takes the same form

as the interchange energy exchange term, which is responsible for feeding free energy from

the free thermal energy into E × B fluctuations in interchange driven instabilities. This

mechanism and the interchange energy exchange term are therefore simultaneously active.

The second mechanism relies on phase shifted ion and electron temperature perturbations

and is in that respect unique because electric potential fluctuations are not needed. This

mechanism provides energy transfer between the ion thermal energy and the mean flow

energy completely bypassing electric potential fluctuations. However, quasi-linear analysis

shows that the direction of the energy flux inhibits mean flows for most parameters.

The principal result of this paper is to demonstrate that ion pressure fluctuations also

contribute to the generation and sustainment of E×B mean flows. These additional mecha-

nisms are included in gyrofluid and gyrokinetic models, but are hidden in their mathematical

formulation. Only by considering these additional mechanisms explicitly, we will be able to

understand E × B mean flow dynamics and compare our findings with experiment where
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E ×B mean flows are key ingredients in transport barriers.

Our analysis was carried out in a simplified two-dimensional drift fluid model describing

interchange driven turbulence in the absence of dynamics parallel to the magnetic field.

Naturally our results cannot readily be generalized to a toroidal configuration where par-

allel dynamics plays an important role. In such a more realistic setting several known

mechanisms38 such as the perpendicular/parallel Reynolds stress, the magnetic flutter con-

tribution, and the Maxwell stress can couple turbulence and mean flows, but we are also

convinced that new mean flow mechanisms similar to those presented here exist. It is there-

fore evident that e.g. the phase shifts between the ion and electron pressures and the electric

potential fluctuations will change and that the quasi-linear results presented here will be al-

tered. Nonetheless, the mechanisms for driving E × B mean flows derived in this paper

will persist in a more complete description. Therefore, our analysis points out that the

paradigm of Reynolds stress driven mean flows is incomplete and must be supplemented by

other mechanisms apparently equivalently capable of modifying E ×B mean flows.

The existence of mechanisms beyond the Reynolds stress capable of driving E×B mean

flows, could provide an adequate explanation for the contradictory findings in experiments

trying to estimate the importance of turbulence driven mean flows19,26,33,34,44. All previous

experimental investigations do only account for the pure E × B Reynolds stress. Other

mechanisms for E × B mean flow generation, including the ones derived here, are not

considered in the experiments, but they must be accounted for (or proven negligible in a

more complete model) in order to settle the ongoing discussion on the role of the turbulence

driven mean flows in transport barriers.
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Appendix A: Approximations to the pressure equations

In this appendix we describe the approximations made in the electron and ion pressure

equations (7c) and (7b) that lead to the reduced model given in Eqs. (12a)-(12c).

First, in both pressure equations (7b) and (7c), we neglect the order ϵ2 compressional

contributions 3/2pa∇·uE in the 3/2∇·(pauE) terms. The advection parts are evaluated with

a constant magnetic field magnitude: 3/2uE · ∇pa ≃ 3/2 B
B0
uE · ∇pa. This approximation

leaves the energy theorem unchanged, and shown in Sec. IIA, the exchange between E ×B

energy and the thermal reservoirs is mediated36 by the E ×B compression terms pa∇ · uE.

These energy exchange terms are therefore retained.

Advection of pressure by the diamagnetic drift vanishes due to the ”diamagnetic cancel-

lation”:

3

2
∇ · (pauDa) + pa∇ · uDa +∇ · q∗

⊥a =
5

2
∇×

( b̂

qaB

)
· ∇(paTa) (A1)

The curvature term on the right hand side is of order ϵ2 and since it does not influence the

conservation of energy we neglect all diamagnetic drift terms in the pressure equations.

Lastly, all terms including the polarization and gyroviscous drifts in the ion pressure

equation are of order ϵ2. Again, we neglect the divergence terms 3
2
∇ ·

(
pi[upi + uπi

]
)
as

they have no influence on the energy theorem, and we keep the compressional contributions

pi∇ · (upi + uπi
) which permits energy exchange between the ion thermal energy and E ×

B kinetic energy36. The thin-layer approximation must also made here (see Eq. (9)) in

order to conserve energy. In other words, we must make the same approximations to the

first order drifts in all equations22. This requirement is also necessary for establishing the

correspondence between drift fluid and gyrofluid models41. The resulting pressure equations

used for the studies in this paper are given in Eqs. (12a)-(12c).

Appendix B: Energy conservation mean flows in full 2D interchange model

In the following we describe the implications of retaining all the second order terms in

the pressure equations which were considered in appendix A. Specifically, we show that: a)

the mean flow equation (30) is unaltered, b) the energy theorem Eq. (16) and the energy

transfer channels in Eqs. (19)-(21) are the same, and c) all energy transfer channels in the

E ×B mean flow energy equation (27) remain, but with modified prefactors. Furthermore,
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an additional transfer term due to advection of ion temperature by the ion polarization drift

is added.

When all second order terms are retained in the electron and ion pressure equations the

2D interchange model in slab geometry and Gyro-Bohm normalized units (see Eq. (11)) is

given as:

D

Dt
n− nξ

∂

∂y
ϕ+ ξ

∂

∂y
pe = Λn (B1a)

∇ ·
( d
dt
∇⊥ϕ

∗)+ ξ
∂

∂y
(pe + pi) = Λw, (B1b)

3

2

D

Dt
pi −

5

2
piξ

∂ϕ

∂y
− 5

2
ξ
∂

∂y

p2i
n

+
5

2
piξ

∂

∂y
(pe + pi)−

3

2

[
d

dt
∇ϕ∗

]
· ∇pi = Λpi , (B1c)

3

2

D

Dt
pe − peξ

∂ϕ

∂y
+

5

2
ξ
∂

∂y

p2e
n

= Λpe , (B1d)

where we introduce the material derivative with non-constant magnetic field

D

Dt
=

∂

∂t
+

1

B(x)
{ϕ, }. (B2)

The varying magnetic field is dictated by energy conservation. The diamagnetic pressure

and heat fluxes in the ion and electron pressure equations are the only non-collisional terms

which explicitly depend on the particle density n. Retention of these higher order terms

demands that the particle density equation is added to the model. Note that in comparison

to the applied model Eq. (12c)-(12b), the prefactors on the ξ-dependent terms are altered.

Furthermore, the full model also includes the advection of ion pressure by the ion polarization

drift; last term on the right hand side of (B1c). This term is neglected in existing drift fluid

models16,32,39.

a. Mean flow equation The E×B mean flow equation (30) is derived from the vorticity

equation (12a). Since the vorticity equation is not changed, nor is the E × B mean flow

equation.

b. Energy theorem The energy theorem Eq. (16) is also left unchanged. The theorem is

derived by integrating: i) the pressure equations (B1c)-(B1d) and ii)”−ϕ” times the vorticity

equation (B1b), over the domain. Summation of the integrals yield the desired result.

The electron pressure integral is only modified by the diamagnetic term (last term on

the left hand side of Eq. (B1d)). Since the slab geometry is periodic in the y-direction

this term trivially vanishes when integrated over the 2D domain. This also holds true for
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the corresponding term in the ion pressure equation. The remaining new terms in the ion

pressure equation (B1c) also vanish since they form divergence terms which only yield surface

terms, which are neglected in the derivation of the energy theorem Eq. (16). For instance

the E ×B terms are combined using

1

B
{ϕ, pi} − piξ

∂

∂y
ϕ = ∇ · (piuE). (B3)

Similar manipulations of the polarization drift, ion pressure flux term result in a divergence

term which only gives a surface contribution to the energy integrals. Therefore, also the

energy transfer channels in Eqs. (19)-(21) remain the same.

c. E×B mean flow energy An equation governing the time evolution of kinetic energy

E0 associated with the mean E ×B flow u0 = ∂x⟨ϕ⟩, is obtained by integrating the product

of ⟨ϕ⟩ times the vorticity equation (B1b):

d

dt
E0 =

∫
dx

[
⟨uyux⟩

A

− ⟨uy
∂pi
∂y

⟩
B

− 5

3
ξ⟨pi

∂pe
∂y

⟩
C∗

− 5

3
ξ⟨piux⟩

D∗

+ ξx
∂

∂x
(ϕ

∂

∂y
pi)

B∗

−∇pi ·
d

dt
∇ϕ∗

D†

]
u′
0

−⟨ϕ⟩
[
⟨Λw⟩ −

2

3

∂2

∂x2
⟨Λpi⟩

E

]
.

(B4)

In comparison with the E × B mean flow energy theorem Eq. (27), the standard E × B

Reynolds stress and the diamagnetic Reynolds stress, ”A” and ”B”, respectively, are left

unchanged. The terms ”C∗” and ”D∗” have the same from as in the original equation (27)

but the coefficients are changed. The ”B∗” is new. It appears because the E × B drift

entering the vorticity equation (B1b) is evaluated with a constant magnetic field whereas

the magnetic field in the ion pressure equation (B1c) is x-dependent B−1 = B−1
0 (1 + ξx).

This discrepancy is an inherent consequence of the thin-layer approximation in drift fluid

models22,36. The term is ϵB smaller than the leading order terms, see Eq. (3). Lastly, an

energy transfer channel ”D†” appears. This additional energy transfer mechanism is due to

the advection of ion pressure by the ion polarization drift. The drift ordering presumes that

the polarization drift is small compared with the E × B and diamagnetic drifts and hence

this additional energy transfer term is presumed small compared to e.g. the diamagnetic

Reynolds stress ”B”. Lastly, we note that the inclusion of the diamagnetic terms in the

pressure equations do not give rise to new energy transfer channels as expected.
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In conclusion, the principal result of this paper is that there are non-negligible mechanisms

beyond the standard E×B Reynolds stress which modify the E×B mean flow. The neglect

of higher order terms in the pressure equations do not alter this result, the inclusion of these

terms, on the other hand, complicate the derivations and the analysis.
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