8 research outputs found
A recurrent neural network for classification of unevenly sampled variable stars
Astronomical surveys of celestial sources produce streams of noisy time
series measuring flux versus time ("light curves"). Unlike in many other
physical domains, however, large (and source-specific) temporal gaps in data
arise naturally due to intranight cadence choices as well as diurnal and
seasonal constraints. With nightly observations of millions of variable stars
and transients from upcoming surveys, efficient and accurate discovery and
classification techniques on noisy, irregularly sampled data must be employed
with minimal human-in-the-loop involvement. Machine learning for inference
tasks on such data traditionally requires the laborious hand-coding of
domain-specific numerical summaries of raw data ("features"). Here we present a
novel unsupervised autoencoding recurrent neural network (RNN) that makes
explicit use of sampling times and known heteroskedastic noise properties. When
trained on optical variable star catalogs, this network produces supervised
classification models that rival other best-in-class approaches. We find that
autoencoded features learned on one time-domain survey perform nearly as well
when applied to another survey. These networks can continue to learn from new
unlabeled observations and may be used in other unsupervised tasks such as
forecasting and anomaly detection.Comment: 23 pages, 14 figures. The published version is at Nature Astronomy
(https://www.nature.com/articles/s41550-017-0321-z). Source code for models,
experiments, and figures at
https://github.com/bnaul/IrregularTimeSeriesAutoencoderPaper (Zenodo Code
DOI: 10.5281/zenodo.1045560
Recommended from our members
Revealing ferroelectric switching character using deep recurrent neural networks.
The ability to manipulate domains underpins function in applications of ferroelectrics. While there have been demonstrations of controlled nanoscale manipulation of domain structures to drive emergent properties, such approaches lack an internal feedback loop required for automatic manipulation. Here, using a deep sequence-to-sequence autoencoder we automate the extraction of latent features of nanoscale ferroelectric switching from piezoresponse force spectroscopy of tensile-strained PbZr0.2Ti0.8O3 with a hierarchical domain structure. We identify characteristic behavior in the piezoresponse and cantilever resonance hysteresis loops, which allows for the classification and quantification of nanoscale-switching mechanisms. Specifically, we identify elastic hardening events which are associated with the nucleation and growth of charged domain walls. This work demonstrates the efficacy of unsupervised neural networks in learning features of a material's physical response from nanoscale multichannel hyperspectral imagery and provides new capabilities in leveraging in operando spectroscopies that could enable the automated manipulation of nanoscale structures in materials
Recommended from our members
Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr0.2 Ti0.8 O3 Thin Films.
Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures of ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion
Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr0.2 Ti0.8 O3 Thin Films.
Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures of ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion