44 research outputs found

    Evaluation of functional group compatibility and development of reaction-accelerating additives in ammonium salt-accelerated hydrazinolysis of amides

    Get PDF
    Functional group compatibility in an amide bond cleavage reaction with hydrazine was evaluated for 26 functional groups in the functional group evaluation (FGE) kit. Accurate and rapid evaluation of the compatibility of functional groups, such as nitrogen-containing heterocycles important in drug discovery research, will enhance the application of this reaction in drug discovery research. These data will be used for predictive studies of organic synthesis methods based on machine learning. In addition, these studies led to discoveries such as the unexpected positive additive effects of carboxylic acids, indicating that the FGE kit can propel serendipitous discoveries

    Photoacoustic in vivo 3D imaging of tumor using a highly tumor-targeting probe under high-threshold conditions

    Get PDF
    Three-dimensional (3D) representation of a tumor with respect to its size, shape, location, and boundaries is still a challenge in photoacoustic (PA) imaging using artificial contrast agents as probes. We carried out PA imaging of tumors in mice using 800RS-PMPC, which was obtained by coupling of 800RS, a near-infrared cyanine dye, with PMPC, a highly selective tumor-targeting methacrylate polymer having phosphorylcholine side chains, as a probe. The conjugate 800RS-PMPC forms compact nanoparticles (dDLS = 14.3 nm), retains the biocompatibility of the parent polymer (PMPC) and exhibits unprecedented PA performance. When applied to mice bearing a 6 × 3 × 3 mm3 tumor buried 6 mm beneath the skin, the probe 800RS-PMPC selectively accumulates in the tumor and emits PA signals that are strong enough to be unambiguously distinguished from noise signals of endogenous blood/hemoglobin. The PA image thus obtained under high-threshold conditions allows 3D characterization of the tumor in terms of its size, shape, location, and boundaries

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids

    Get PDF
    The long-chain base phytosphingosine is a component of sphingolipids and exists in yeast, plants and some mammalian tissues. Phytosphingosine is unique in that it possesses an additional hydroxyl group compared with other long-chain bases. However, its metabolism is unknown. Here we show that phytosphingosine is metabolized to odd-numbered fatty acids and is incorporated into glycerophospholipids both in yeast and mammalian cells. Disruption of the yeast gene encoding long-chain base 1-phosphate lyase, which catalyzes the committed step in the metabolism of phytosphingosine to glycerophospholipids, causes an similar to 40% reduction in the level of phosphatidylcholines that contain a C15 fatty acid. We also find that 2-hydroxypalmitic acid is an intermediate of the phytosphingosine metabolic pathway. Furthermore, we show that the yeast MPO1 gene, whose product belongs to a large, conserved protein family of unknown function, is involved in phytosphingosine metabolism. Our findings provide insights into fatty acid diversity and identify a pathway by which hydroxyl group-containing lipids are metabolized

    Clinical usefulness of the “GeneSoC® SARS-CoV-2 N2 Detection Kit”

    No full text
    The GeneSoC® that launched recently enables the quantitative detection of target genes (in approximately 15 min) using microfluidic thermal cycling technology. Here, we compared the diagnostic performance of the “GeneSoC® SARS-CoV-2 N2 Detection Kit” (Kyorin assay) and conventional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection assays to verify the clinical usefulness of the Kyorin assay

    Associations between serum 25-hydroxyvitamin D3 level and skeletal muscle mass and lower limb muscle strength in Japanese middle-aged subjects

    No full text
    Objectives: One of the important risk factors of falling is decreased muscle mass and muscle strength. Recently, there has been an increasing concern on the role of vitamin D in muscle strength and physical activity. Aim of our study is to examine the relationships between vitamin D status and muscle mass and muscle strength in middle-aged healthy adults. Methods: Subjects were 40 healthy volunteers aged 42.0 ± 10.6 years old. Evaluation was made for serum vitamin D3 metabolites including 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] concentrations, lower limb muscle strength, and dietary intake by food frequency questionnaire. Body composition was measured by dual-energy X-ray absorptiometry (DXA), and appendicular skeletal mass index (ASMI) was calculated as skeletal muscle mass/squared height. Results: 70% of the subjects had vitamin D insufficiency/deficiency (serum total 25(OH)D < 20 ng/mL), and female subjects had significantly lower serum total 25(OH)D level compared with males. Vitamin D insufficiency/deficiency group had significantly higher body fat, lower SMI and muscle strength, probably reflecting higher percentage of female subjects. Serum vitamin D3 metabolites levels were significantly correlated with whole and site-specific ASMI, and lower limb muscle strength, except for the correlation between serum 24,25(OH)2D3 concentration and lower limb muscle strength. In addition, serum 25(OH)D3 level was a positive significant predictor for both ASMI and lower limb muscle strength, while serum 24,25(OH)2D3 level was not their significant predictor. Conclusions: Serum 25(OH)D3 level was significantly correlated with both skeletal muscle mass and lower limb muscle strength
    corecore