6 research outputs found

    Statistical biophysics of hematopoiesis and growing cell populations

    No full text
    Cell populations in the human body form highly complex systems, their behavior driven by countless processes within the cells themselves as well as their interactions with each other and their environment. A mathematical approach to describing their emergent phenomena on the tissue level typically requires abstractions of these underlying systems in order to obtain tractable and interpretable models, which in turn often leads to descriptions involving stochastic processes.In this doctoral thesis two such cellular systems are investigated. The first is the human hematopoietic system: the machinery by which precursor cells of the blood are cultivated and matured in the bone marrow. This process is essential to enable mammalian physiology, from providing oxygen-carrying erythrocytes to ensuring regular upkeep and preservation of the immune system. Obtaining a quantitative understanding of key aspects of this system can provide valuable insights and testable predictions concerning the origin and dynamics of various blood-related diseases, however, in vivo studies of maturing blood cells pose significant challenges and in vitro studies provide only limited predictive power. The system’s hierarchical architecture is on the other hand well fit to the application of mathematical techniques relying only on a few basic assumptions and parameters. This research aims to contribute to two broader questions concerning hematopoiesis, the first being “What is the shape of this system?” and the second “How does it behave?”. Both questions must be answered sufficiently before quantitative models can be developed with enough predictive power to aid in clinical research and applications.The second project stems from questions in oncology concerning the locomotive capabilities of various cancerous cell types, but ultimately poses these in a broader context, attempting to understand cell motion in the context of a growing but spatially restricted population. Drawing from the domain of non-equilibrium statistical mechanics applied to actively moving particles, an important goal is to understand the effects of heightened proliferation on the collective motion.Les populations cellulaires du corps humain forment des systèmes complexes, leur comportement étant déterminé par d'innombrables processus au sein des cellules elles-mêmes ainsi que par leurs interactions entre elles et avec leur environnement. Une approche mathématique de la description de leurs phénomènes émergents au niveau des tissus nécessite généralement l'abstraction de ces systèmes sous-jacents afin d'obtenir des modèles traitables et interprétables, ce qui à son tour conduit souvent à des descriptions impliquant des processus stochastiques. Dans cette thèse de doctorat, deux de ces systèmes cellulaires sont étudiés.Le premier est le système hématopoïétique humain :la machinerie par laquelle les cellules précurseurs du sang sont cultivées et maturées dans la moelle osseuse. Ce processus est essentiel pour permettre la physiologie des mammifères, depuis la fourniture d'érythrocytes porteurs d'oxygène jusqu'à la préservation du système immunitaire. L'obtention d'une compréhension quantitative des aspects clés de ce système peut fournir des informations précieuses et des prévisions vérifiables concernant l'origine et la dynamique de diverses maladies liées au sang. Cependant, les études in vivo de la maturation des cellules sanguines posent des défis importants, et les études in vitro n'offrent qu'un pouvoir prédictif limité. Par ailleurs, l'architecture hiérarchique du système est bien adaptée à l'application de techniques mathématiques reposant uniquement sur quelques hypothèses et paramètres. Cette recherche vise à contribuer à deux questions plus larges concernant l'hématopoïèse, la première étant "Quelle est la forme de ce système" et la seconde "Comment se comporte-t-il ?Ces deux questions doivent recevoir une réponse suffisante avant que des modèles quantitatifs puissent être développés avec un pouvoir prédictif suffisant pour faciliter la recherche clinique et les applications.Le deuxième projet découle de questions en oncologie concernant les capacités locomotrices de divers types de cellules cancéreuses, mais les pose finalement dans un contexte plus large, en essayant de comprendre le mouvement des cellules dans le disposition d'une population croissante mais limitée dans l'espace. En s'appuyant sur le domaine de la mécanique statistique du non-équilibre appliquée aux particules en mouvement actif, un objectif important est de comprendre les effets d'une prolifération accrue sur le mouvement collectif.Celpopulaties in het menselijk lichaam vormen complexe systemen. Het individuele celgedrag wordt gedreven door zowel talloze processen binnenin de cellen zelf, als door interacties met elkaar en hun omgeving. Een wiskundige beschrijving van fenomenen op het niveau van de weefsels vereist abstracties van deze onderliggende systemen om hanteerbare en interpreteerbare modellen te verkrijgen, waarbij vaak stochastische processen betrokken zijn. In dit proefschrift worden twee van dergelijke cellulaire systemen onderzocht. Het eerste is het menselijke hematopoëtische systeem: de machinerie waarmee voorlopercellen van het bloed worden ontwikkeld in het beenmerg. Dit proces is essentieel om de fysiologie van zoogdieren mogelijk te maken, van het leveren van zuurstofdragende rode bloedcellen tot het onderhoud van het immuunsysteem. Het verkrijgen van een kwantitatief inzicht in aspecten van dit systeem kan waardevolle inzichten en testbare voorspellingen opleveren met betrekking tot de oorsprong en de dynamiek van verschillende bloedgerelateerde ziekten. Echter, in vivo studies van ontwikkelende bloedcellen vormen een aanzienlijke uitdaging en in vitro studies leveren slechts een beperkt voorspellend vermogen op. De hiërarchische architectuur van het systeem verleent zich daarentegen handig naar het toepassen van wiskundige technieken op basis van slechts enkele aannames en parameters. Dit onderzoek heeft als doel bij te dragen aan twee bredere vragen met betrekking tot hematopoëse, de eerste zijnde "Wat is de structuur van dit systeem?" en de tweede "Hoe gedraagt het zich?". Beide vragen moeten voldoende worden beantwoord voordat kwantitatieve modellen kunnen worden ontwikkeld met voldoende voorspellende kracht om klinisch onderzoek te kunnen bijstaan.Het tweede project komt voort uit vraagstukken in de oncologie over de motorische capaciteiten van verschillende kankerceltypes, maar plaatst deze uiteindelijk in een bredere context, waarbij getracht wordt de stochastische beweging van cellen te begrijpen in de context van een groeiende maar ruimtelijk beperkte populatie. Uitgaande van het domein van de niet-evenwicht statistische mechanica toegepast op actief bewegende deeltjes, is een belangrijk doel het begrijpen van de effecten van een verhoogde proliferatie op de collectieve beweging.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    A quantitative model for lung colonization by benign mammary cells in breast cancer

    No full text
    Metastasis is a complex and multifaceted process that can vary greatly between patients and cancer types. There are many models describing different pathways leading to ectopic colonization, however most share the assumption that all metastatic lesions are initiated by cancerous cells that have been ejected from (and are therefore clonal offspring of) the primary tumor. Nevertheless, intertumoral heterogeneity among metastatic lesions with respect to each other and the primary paints a more complicated picture of clonal relationships and heritage, one which is not always compatible with such linear models. Here we examine an alternative pathway to lung colonization in breast cancer. Recent findings show that in mice healthy mammary stem cells may form proliferating colonies in the lungs when injected in the tail vein, and that a growing tumor in the mammary gland may induce dissemination of neighboring mammary epithelial cells to the lungs. If an oncogenic mutation occurs in such a colony the resulting lesion would not share the same mutational history as the primary tumor and would therefore contribute to heterogeneity and possible treatment failure.info:eu-repo/semantics/publishe

    Evolutionary Dynamics of Paroxysmal Nocturnal Hemoglobinuria

    No full text
    info:eu-repo/semantics/nonPublishe

    Multistage feedback-driven compartmental dynamics of hematopoiesis

    No full text
    Human hematopoiesis is surprisingly resilient to disruptions, providing suitable responses to severe bleeding, long-lasting immune activation, and even bone marrow transplants. Still, many blood disorders exist which push the system past its natural plasticity, resulting in abnormalities in the circulating blood. While proper treatment of such diseases can benefit from understanding the underlying cell dynamics, these are non-trivial to predict due to the hematopoietic system's hierarchical nature and complex feedback networks. To characterize the dynamics following different types of perturbations, we investigate a model representing hematopoiesis as a sequence of compartments covering all maturation stages—from stem to mature cells—where feedback regulates cell production to ongoing necessities. We find that a stable response to perturbations requires the simultaneous adaptation of cell differentiation and self-renewal rates, and show that under conditions of continuous disruption—as found in chronic hemolytic states—compartment cell numbers evolve to novel stable states.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Dynamics of mutant cells and incidence of PNH derived from in silico studies.

    No full text
    <p><b>A.</b> The probability of clinical PNH occurring in an individual between the ages of 1–100 years. Blue: patients with one active clone. Red: patients with 2 active clones. Yellow: patients where 3 or more active clones occurred. <b>B.</b> Expected incidence of clinical PNH in the US population, found by folding the Markov chain probabilities for ages 1–100 with population data from the 2010 US census. Same color codes as in <b>A</b>. <b>C.</b> The distribution of all individuals with a mutant clone in the 2010 US census population over the ages 1–100 and clone sizes 1%-100%.</p

    Evolutionary dynamics of paroxysmal nocturnal hemoglobinuria

    No full text
    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder characterized by hemolysis and a high risk of thrombosis, that is due to a deficiency in several cell surface proteins that prevent complement activation. Its origin has been traced to a somatic mutation in the PIG-A gene within hematopoietic stem cells (HSC). However, to date the question of how this mutant clone expands in size to contribute significantly to hematopoiesis remains under debate. One hypothesis posits the existence of a selective advantage of PIG-A mutated cells due to an immune mediated attack on normal HSC, but the evidence supporting this hypothesis is inconclusive. An alternative (and simpler) explanation attributes clonal expansion to neutral drift, in which case selection neither favours nor inhibits expansion of PIG-A mutated HSC. Here we examine the implications of the neutral drift model by numerically evolving a Markov chain for the probabilities of all possible outcomes, and investigate the possible occurrence and evolution, within this framework, of multiple independently arising clones within the HSC pool. Predictions of the model agree well with the known incidence of the disease and average age at diagnosis. Notwithstanding the slight difference in clonal expansion rates between our results and those reported in the literature, our model results lead to a relative stability of clone size when averaging multiple cases, in accord with what has been observed in human trials. The probability of a patient harbouring a second clone in the HSC pool was found to be extremely low ([Formula: see text]). Thus our results suggest that in clinical cases of PNH where two independent clones of mutant cells are observed, only one of those is likely to have originated in the HSC pool.JMP gratefully acknowledges Financial Support by Fundação para a Ciência e Tecnologia (FCT) through grants PTDC/EEI-SII/5081/2014, PTDC/MAT/STA/3358/2014 and UID/BIA/04050/2013. NMP and TL gratefully acknowledge the Financial Support by the F.N.R.S.-F.R.S. through the Televie grant 28479704. The funding organizations had no role in the design of the work, collection and analysis of data, interpretation of data or writing of the manuscript
    corecore