416 research outputs found

    Non-equilibrium dynamics of Bose-Einstein condensates

    Get PDF
    In the following work we investigate the dynamics of Bose-Einstein condensates(BECs) under the influence of time-dependent potentials. The response of such a sensitive system to external perturbations is a matter of increasing interest. This is because of the enormous growth in understanding the physics and emerging applications of BECs in many areas of physics such as sensing, microscopy and quantum information

    Crop Fertilization on Coast Prairie and Coastal Bend Soils.

    Get PDF
    4 p

    Rapid Mineral Precipitation During Shear Fracturing of Carbonate‐Rich Shales

    Full text link
    Target subsurface reservoirs for emerging low‐carbon energy technologies and geologic carbon sequestration typically have low permeability and thus rely heavily on fluid transport through natural and induced fracture networks. Sustainable development of these systems requires deeper understanding of how geochemically mediated deformation impacts fracture microstructure and permeability evolution, particularly with respect to geochemical reactions between pore fluids and the host rock. In this work, a series of triaxial direct shear experiments was designed to evaluate how fractures generated at subsurface conditions respond to penetration of reactive fluids with a focus on the role of mineral precipitation. Calcite‐rich shale cores were directly sheared under 3.5 MPa confining pressure using BaCl2‐rich solutions as a working fluid. Experiments were conducted within an X‐ray computed tomography (xCT) scanner to capture 4‐D evolution of fracture geometry and precipitate growth. Three shear tests evidenced nonuniform precipitation of barium carbonates (BaCO3) along through‐going fractures, where the extent of precipitation increased with increasing calcite content. Precipitates were strongly localized within fracture networks due to mineral, geochemical, and structural heterogeneities and generally concentrated in smaller apertures where rock:water ratios were highest. The combination of elevated fluid saturation and reactive surface area created in freshly activated fractures drove near‐immediate mineral precipitation that led to an 80% permeability reduction and significant flow obstruction in the most reactive core. While most previous studies have focused on mixing‐induced precipitation, this work demonstrates that fluid–rock interactions can trigger precipitation‐induced permeability alterations that can initiate or mitigate risks associated with subsurface energy systems.Key PointsBarium carbonates precipitate near‐immediately with injection of BaCl2‐rich fluid into freshly sheared calcite‐rich shalesPrecipitation reactions are strongly localized, favoring narrow apertures and zones of extensive fragmentationFluid–rock interactions can promote significant precipitation‐induced permeability alterations that remain challenging to predictPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155917/1/jgrb54184_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155917/2/jgrb54184-sup-0001-2019JB018864-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155917/3/jgrb54184.pd

    Crop Fertilization on Coast Prairie and Coastal Bend Soils.

    Get PDF
    4 p

    Carotenoid skin ornaments as flexible indicators of male foraging behavior in a marine predator: Variation among Mexican colonies of brown booby ( Sula leucogaster )

    Get PDF
    Carotenoid-dependent ornaments can reflect animals’ diet and foraging behaviors. However, this association should be spatially flexible and variable among populations to account for geographic variation in optimal foraging behaviors. We tested this hypothesis using populations of a marine predator (the brown booby, Sula leucogaster) that forage across a gradient in ocean depth in and near the Gulf of California. Specifically, we quantified green chroma for two skin traits (foot and gular color) and their relationship to foraging location and diet of males, as measured via global positioning system tracking and stable carbon isotope analysis of blood plasma. Our three focal colonies varied in which foraging attributes were linked to carotenoid-rich ornaments. For gular skin, our data showed a shift from a benthic prey-green skin association in the shallow waters in the north to a pelagic prey-green skin association in the deepest waters to the south. Mean foraging trip duration and distance of foraging site from coast also predicted skin coloration in some colonies. Finally, brown booby colonies varied in which trait (foot versus gular skin color) was associated with foraging metrics. Overall, our results indicate that male ornaments reflect quality of diet and foraging–information that may help females select mates who are adapted to local foraging conditions and therefore, are likely to provide better parental care. More broadly, our results stress that diet-dependent ornaments are closely linked to animals’ environments and that we cannot assume ornaments or ornament signal content are ubiquitous within species, even when ornaments appear similar among populations

    Rice Fertilizer Recommendations.

    Get PDF
    4 p
    • 

    corecore