639 research outputs found

    Exactly Marginal Deformations and Global Symmetries

    Full text link
    We study the problem of finding exactly marginal deformations of N=1 superconformal field theories in four dimensions. We find that the only way a marginal chiral operator can become not exactly marginal is for it to combine with a conserved current multiplet. Additionally, we find that the space of exactly marginal deformations, also called the "conformal manifold," is the quotient of the space of marginal couplings by the complexified continuous global symmetry group. This fact explains why exactly marginal deformations are ubiquitous in N=1 theories. Our method turns the problem of enumerating exactly marginal operators into a problem in group theory, and substantially extends and simplifies the previous analysis by Leigh and Strassler. We also briefly discuss how to apply our analysis to N=2 theories in three dimensions.Comment: 23 pages, 2 figure

    Bistability in Apoptosis by Receptor Clustering

    Get PDF
    Apoptosis is a highly regulated cell death mechanism involved in many physiological processes. A key component of extrinsically activated apoptosis is the death receptor Fas, which, on binding to its cognate ligand FasL, oligomerize to form the death-inducing signaling complex. Motivated by recent experimental data, we propose a mathematical model of death ligand-receptor dynamics where FasL acts as a clustering agent for Fas, which form locally stable signaling platforms through proximity-induced receptor interactions. Significantly, the model exhibits hysteresis, providing an upstream mechanism for bistability and robustness. At low receptor concentrations, the bistability is contingent on the trimerism of FasL. Moreover, irreversible bistability, representing a committed cell death decision, emerges at high concentrations, which may be achieved through receptor pre-association or localization onto membrane lipid rafts. Thus, our model provides a novel theory for these observed biological phenomena within the unified context of bistability. Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our model also suggests a mechanism by which cells may function as bistable life/death switches independently of any such dynamics in their downstream components. Our results highlight the role of death receptors in deciding cell fate and add to the signal processing capabilities attributed to receptor clustering.Comment: Accepted by PLoS Comput Bio

    A teleofunctional account of evolutionary mismatch.

    Get PDF
    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10539-016-9527-1When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way

    Bilateral spondylolysis of inferior articular processes of the fourth lumbar vertebra: a case report

    Get PDF
    Lumbar spondylolysis, a well known cause of low back pain, usually affects the pars interarticularis of a lower lumbar vertebra and rarely involves the articular processes. We report a rare case of bilateral spondylolysis of inferior articular processes of L4 vertebra that caused spinal canal stenosis with a significant segmental instability at L4/5 and scoliosis. A 31-year-old male who had suffered from low back pain since he was a teenager presented with numbness of the right lower leg and scoliosis. Plain X-rays revealed bilateral spondylolysis of inferior articular processes of L4, anterolisthesis of the L4 vertebral body, and right lateral wedging of the L4/5 disc with compensatory scoliosis in the cephalad portion of the spine. MR images revealed spinal canal stenosis at the L4/5 disc level. Posterior lumbar interbody fusion of the L4/5 was performed, and his symptoms were relieved

    Retention Time Variability as a Mechanism for Animal Mediated Long-Distance Dispersal

    Get PDF
    Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Effects of Sorafenib on Intra-Tumoral Interstitial Fluid Pressure and Circulating Biomarkers in Patients with Refractory Sarcomas (NCI Protocol 6948)

    Get PDF
    Purpose: Jain Sorafenib is a multi-targeted tyrosine kinase inhibitor with therapeutic efficacy in several malignancies. Sorafenib may exert its anti-neoplastic effect in part by altering vascular permeability and reducing intra-tumoral interstitial hypertension. As correlative science with a phase II study in patients with advanced soft-tissue sarcomas (STS), we evaluated the impact of this agent on intra-tumor interstitial fluid pressure (IFP), serum circulating biomarkers, and vascular density. Patients and Methods: Patients with advanced STS with measurable disease and at least one superficial lesion amenable to biopsy received sorafenib 400 mg twice daily. Intratumoral IFP and plasma and circulating cell biomarkers were measured before and after 1–2 months of sorafenib administration. Results were analyzed in the context of the primary clinical endpoint of time-to-progression (TTP). Results: In 15 patients accrued, the median TTP was 45 days (range 14–228). Intra-tumoral IFP measurements obtained in 6 patients at baseline showed a direct correlation with tumor size. Two patients with stable disease at two months had post-sorafenib IFP evaluations and demonstrated a decline in IFP and vascular density. Sorafenib significantly increased plasma VEGF, PlGF, and SDF1α\alpha and decreased sVEGFR-2 levels. Increased plasma SDF1α\alpha and decreased sVEGFR-2 levels on day 28 correlated with disease progression. Conclusions: Pretreatment intra-tumoral IFP correlated with tumor size and decreased in two evaluable patients with SD on sorafenib. Sorafenib also induced changes in circulating biomarkers consistent with expected VEGF pathway blockade, despite the lack of more striking clinical activity in this small series

    Infection Parameters in the Sand Fly Vector That Predict Transmission of Leishmania major

    Get PDF
    To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic “cutoff” value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite
    corecore