1,050 research outputs found
The Origin and Universality of the Stellar Initial Mass Function
We review current theories for the origin of the Stellar Initial Mass
Function (IMF) with particular focus on the extent to which the IMF can be
considered universal across various environments. To place the issue in an
observational context, we summarize the techniques used to determine the IMF
for different stellar populations, the uncertainties affecting the results, and
the evidence for systematic departures from universality under extreme
circumstances. We next consider theories for the formation of prestellar cores
by turbulent fragmentation and the possible impact of various thermal,
hydrodynamic and magneto-hydrodynamic instabilities. We address the conversion
of prestellar cores into stars and evaluate the roles played by different
processes: competitive accretion, dynamical fragmentation, ejection and
starvation, filament fragmentation and filamentary accretion flows, disk
formation and fragmentation, critical scales imposed by thermodynamics, and
magnetic braking. We present explanations for the characteristic shapes of the
Present-Day Prestellar Core Mass Function and the IMF and consider what
significance can be attached to their apparent similarity. Substantial
computational advances have occurred in recent years, and we review the
numerical simulations that have been performed to predict the IMF directly and
discuss the influence of dynamics, time-dependent phenomena, and initial
conditions.Comment: 24 pages, 6 figures. Accepted for publication as a chapter in
Protostars and Planets VI, University of Arizona Press (2014), eds. H.
Beuther, R. S. Klessen, C. P. Dullemond, Th. Hennin
Reconstitution of the Olfactory Epithelium Following Injury in ApoE-Deficient Mice
ApoE, a protein component of lipoproteins, is extensively expressed in the primary olfactory pathway. Because apoE has been shown to play a vital role in nerve repair and remodeling, we hypothesized that apoE expression will increase in the injured olfactory epithelium (OE), and that apoE deficiency in apoE knockout (KO) mice will lead to delayed/incomplete reconstitution of the OE following injury. To directly test this hypothesis, we compared OE regeneration in wild-type (WT) and KO mice following injury induced by intranasal irrigation of Triton X-100. OE was collected at 0, 3, 7, 21, 42, and 56 days post lesion. The amount and distribution of apoE in the regenerating OE was measured by immunoblotting and immunohistochemistry. Rate of OE reconstitution in WT and KO mice was assessed by using three independent measures: (1) OE thickness was measured in cresyl-violet stained sections, (2) basal cell proliferation was determined by using bromodeoxyuridine (BrdU) staining, and (3) differentiation and maturation of olfactory sensory neurons were measured by immunoblotting and immunohistochemical analysis of growth associated protein (GAP) 43 and olfactory marker protein (OMP). The results revealed that apoE expression in the OE is highly regulated during the entire course of OE reconstitution post injury, and that apoE deficiency in apoE KO mice leads to delayed recovery of mature OMP+ cells in the reconstituting OE. The data suggest that apoE production increases in the injured OE to facilitate maturation of olfactory sensory neurons
Guidance for the practical management of warfarin therapy in the treatment of venous thromboembolism
Monitoring interval-training responses for swimming using the 3-min all-out exercise test.
International Journal of Exercise Science 9(5): 545-553, 2016. The purpose of this study was to determine whether the 3-min all-out exercise test (3MT) could be applied to create an off-season high intensity, interval training (HIIT) program to improve performance, specifically critical velocity (CV), in the sport of swimming. We tested a group of competitive female swimmers (age = 19 ± 1 yrs, height = 169 ± 7 cm, body mass = 69 ± 9 kg) to determine their swimming CV and finite energy capacity \u3eCV (D’), and created a four week (2 d∙wk-1) personalized interval training program. Participants were divided in to two groups, a 150yd interval group (n =11) and a 250yd interval group (n =6). Each group completed a series of intervals designed to deplete a given percentage of D’ at velocities exceeding CV. A 3MT following the training period was administered to assess for any changes in CV, D’, average velocity during the first 150s of the test (V150s) and total distance traveled (D). Both groups improved their CV (+0.04 m∙s-1), V150s (+0.03 m∙s-1) and D (+8.64 m) (p \u3c 0.05), however, significant interactions for D’ between groups was not observed (p \u3e 0.05). We conclude that HIIT prescriptions based on a 3MT can improve swim performance over a four-week period. Future research on the fidelity of measuring CV and D’ using a swimming 3MT is needed to help aid practitioners in interpreting true training adaptations
Do divorcing couples become happier by breaking up?
Divorce is a leap in the dark. The paper investigates whether people who split up actually become happier. Using the British Household Panel Survey, we can observe an individual's level of psychological well-being in the years before and after divorce. Our results show that divorcing couples reap psychological gains from the dissolution of their marriages. Men and women benefit equally. The paper also studies the effects of bereavement, of having dependant children and of remarriage. We measure well-being by using general health questionnaire and life satisfaction scores
Impact of Home- and Hospital-Based Exercise in Cardiac Rehabilitation on Hopelessness in Patients With Coronary Heart Disease
Hopelessness is associated with increased adverse events and decreased survival in patients with coronary heart disease (CHD). The purpose of this research was to examine the effect of regular home- and hospital-based cardiac rehabilitation (CR) exercise on hopelessness levels in patients with CHD, hypothesizing that increased exercise in either setting would lead to decreased state hopelessness
Mapping Rangeland Health Indicators in East Africa from 2000 to 2022
Tracking environmental change is important to ensure efficient and sustainable natural resources management. East Africa is dominated by arid and semi-arid rangeland systems, where extensive grazing of livestock represents the primary livelihood for most of the human population. Despite several mapping efforts, East Africa lacks accurate and reliable high-resolution rangeland health maps necessary for management, policy, and research purposes. Earth Observations offer the opportunity to assess spatiotemporal dynamics in rangeland health conditions at much higher spatial and temporal coverage than conventional approaches that rely on in-situ methods, while complimenting their certainty. Using machine learning-based classification and linear unmixing, this paper produced Landsat-based time series at 30 m spatial resolution for mapping of land cover classes (LCC) and vegetation fractional cover (VFC, including photosynthetic vegetation PV, non-photosynthetic vegetation NPV, and bare ground BG), two major data assets to derive metrics for rangeland health in East Africa. Due to scarcity of in-situ measurements in a large, remote and highly heterogeneous landscape, an algorithm was developed to combine very high-resolution WorldView-2 and -3 satellite imagery at < 2 m resolutions with a limited set of ground observations to generate reference labels across the study region. The LCC analysis yielded an overall accuracy of 0.856 using our validation dataset, with Kappa of 0.832; VFC, yielded R2 = 0.801, p < 2.2e-16, normalized root mean squared error (nRMSE) = 0.123. Our products represent the first multi-decadal high-resolution dataset specifically designed for mapping and monitoring rangelands health in East Africa including Kenya, Ethiopia and Somalia, covering a total area of 745,840 km2, dominated by arid and semi-arid extensive rangeland systems. These data can be valuable to a wide range of development, humanitarian, and ecological conservation efforts and are available at https://doi.org/10.5281/zenodo.7106166 (Soto et al., 2023) and Google Earth Engine (GEE; details in data availability section)
Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum
Coronavirus disease 2019 (COVID-19) is a viral infection that can, in severe cases, result in cytokine storm, systemic inflammatory response and coagulopathy that is prognostic of poor outcomes. While some, but not all, laboratory findings appear similar to sepsis-associated disseminated intravascular coagulopathy (DIC), COVID-19- induced coagulopathy (CIC) appears to be more prothrombotic than hemorrhagic. It has been postulated that CIC may be an uncontrolled immunothrombotic response to COVID-19, and there is growing evidence of venous and arterial thromboembolic events in these critically ill patients. Clinicians around the globe are challenged with rapidly identifying reasonable diagnostic, monitoring and anticoagulant strategies to safely and effectively manage these patients. Thoughtful use of proven, evidence-based approaches must be carefully balanced with integration of rapidly emerging evidence and growing experience. The goal of this document is to provide guidance from the Anticoagulation Forum, a North American organization of anticoagulation providers, regarding use of anticoagulant therapies in patients with COVID-19. We discuss in-hospital and post-discharge venous thromboembolism (VTE) prevention, treatment of suspected but unconfirmed VTE, laboratory monitoring of COVID-19, associated anticoagulant therapies, and essential elements for optimized transitions of care specific to patients with COVID-19
Tree migration-rates : narrowing the gap between inferred post-glacial rates and projected rates
Faster-than-expected post-glacial migration rates of trees have puzzled ecologists for a long time. In Europe, post-glacial migration is assumed to have started from the three southern European peninsulas (southern refugia), where large areas remained free of permafrost and ice at the peak of the last glaciation. However, increasing palaeobotanical evidence for the presence of isolated tree populations in more northerly microrefugia has started to change this perception. Here we use the Northern Eurasian Plant Macrofossil Database and palaeoecological literature to show that post-glacial migration rates for trees may have been substantially lower (60–260 m yr–1) than those estimated by assuming migration from southern refugia only (115–550 m yr–1), and that early-successional trees migrated faster than mid- and late-successional trees. Post-glacial migration rates are in good agreement with those recently projected for the future with a population dynamical forest succession and dispersal model, mainly for early-successional trees and under optimal conditions. Although migration estimates presented here may be conservative because of our assumption of uniform dispersal, tree migration-rates clearly need reconsideration. We suggest that small outlier populations may be a key factor in understanding past migration rates and in predicting potential future range-shifts. The importance of outlier populations in the past may have an analogy in the future, as many tree species have been planted beyond their natural ranges, with a more beneficial microclimate than their regional surroundings. Therefore, climate-change-induced range-shifts in the future might well be influenced by such microrefugia
- …