36 research outputs found

    Neuropeptide Release Is Impaired in a Mouse Model of Fragile X Mental Retardation Syndrome

    Get PDF
    Fragile X syndrome (FXS), an inherited disorder characterized by mental retardation and autism-like behaviors, is caused by the failure to transcribe the gene for fragile X mental retardation protein (FMRP), a translational regulator and transporter of select mRNAs. FXS model mice (Fmr1 KO mice) exhibit impaired neuropeptide release. Release of biogenic amines does not differ between wild-type (WT) and Fmr1 KO mice. Rab3A, an mRNA cargo of FMRP involved in the recruitment of vesicles, is decreased by ∼50% in synaptoneurosomes of Fmr1 KO mice; however, the number of dense-core vesicles (DCVs) does not differ between WT and Fmr1 KO mice. Therefore, deficits associated with FXS may reflect this aberrant vesicle release, specifically involving docking and fusion of peptidergic DCVs, and may lead to defective maturation and maintenance of synaptic connections

    Adoption of practice guidelines and assessment tools in substance abuse treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gap between research and practice limits utilization of relevant, progressive and empirically validated strategies in substance abuse treatment.</p> <p>Methods</p> <p>Participants included substance abuse treatment programs from the Northeastern United States. Structural equation models were constructed with agency level data to explore two outcome variables: adoption of practice guidelines and assessment tools at two points in time; models also included organizational, staffing and service variables.</p> <p>Results</p> <p>In 1997, managed care involvement and provision of primary care services had the strongest association with increased use of assessment tools, which, along with provision of counseling services, were associated with a greater use of practice guidelines. In 2001, managed care involvement, counseling services and being a stand-alone drug treatment agency were associated with a greater use of assessment tools, which was in turn related to an increase in the use of practice guidelines.</p> <p>Conclusions</p> <p>This study provides managers, clinicians and policy-makers with a framework for understanding factors related to the adoption of new technologies in substance abuse treatment.</p

    Connectivity within and among a Network of Temperate Marine Reserves

    Get PDF
    Networks of marine reserves are increasingly being promoted as a means of conserving marine biodiversity. One consideration in designing systems of marine reserves is the maintenance of connectivity to ensure the long-term persistence and resilience of populations. Knowledge of connectivity, however, is frequently lacking during marine reserve design and establishment. We characterise patterns of genetic connectivity of 3 key species of habitat-forming macroalgae across an established network of temperate marine reserves on the east coast of Australia and the implications for adaptive management and marine reserve design. Connectivity varied greatly among species. Connectivity was high for the subtidal macroalgae Ecklonia radiata and Phyllospora comosa and neither species showed any clear patterns of genetic structuring with geographic distance within or among marine parks. In contrast, connectivity was low for the intertidal, Hormosira banksii, and there was a strong pattern of isolation by distance. Coastal topography and latitude influenced small scale patterns of genetic structure. These results suggest that some species are well served by the current system of marine reserves in place along this temperate coast but it may be warranted to revisit protection of intertidal habitats to ensure the long-term persistence of important habitat-forming macroalgae. Adaptively managing marine reserve design to maintain connectivity may ensure the long-term persistence and resilience of marine habitats and the biodiversity they support

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Institutional Environments for Enabling Agricultural Technology Innovations: The Role of Land Rights in Ethiopia, Ghana, India and Bangladesh

    Full text link

    Aplysia

    No full text

    Proteomic Discovery and Validation of Novel Fluid Biomarkers for Improved Patient Selection and Prediction of Clinical Outcomes in Alzheimer’s Disease Patient Cohorts

    No full text
    Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by progressive cognitive decline. The two cardinal neuropathological hallmarks of AD include the buildup of cerebral β amyloid (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau. The current disease-modifying treatments are still not effective enough to lower the rate of cognitive decline. There is an urgent need to identify early detection and disease progression biomarkers that can facilitate AD drug development. The current established readouts based on the expression levels of amyloid beta, tau, and phospho-tau have shown many discrepancies in patient samples when linked to disease progression. There is an urgent need to identify diagnostic and disease progression biomarkers from blood, cerebrospinal fluid (CSF), or other biofluids that can facilitate the early detection of the disease and provide pharmacodynamic readouts for new drugs being tested in clinical trials. Advances in proteomic approaches using state-of-the-art mass spectrometry are now being increasingly applied to study AD disease mechanisms and identify drug targets and novel disease biomarkers. In this report, we describe the application of quantitative proteomic approaches for understanding AD pathophysiology, summarize the current knowledge gained from proteomic investigations of AD, and discuss the development and validation of new predictive and diagnostic disease biomarkers

    Neuromodulatory control of a goal-directed decision.

    No full text
    Many cost-benefit decisions reduce to simple choices between approach or avoidance (or active disregard) to salient stimuli. Physiologically, critical factors in such decisions are modulators of the homeostatic neural networks that bias decision processes from moment to moment. For the predatory sea-slug Pleurobranchaea, serotonin (5-HT) is an intrinsic modulatory promoter of general arousal and feeding. We correlated 5-HT actions on appetitive state with its effects on the approach-avoidance decision in Pleurobranchaea. 5-HT and its precursor 5-hydroxytryptophan (5-HTP) augmented general arousal state and reduced feeding thresholds in intact animals. Moreover, 5-HT switched the turn response to chemosensory stimulation from avoidance to orienting in many animals. In isolated CNSs, bath application of 5-HT both stimulated activity in the feeding motor network and switched the fictive turn response to unilateral sensory nerve stimulation from avoidance to orienting. Previously, it was shown that increasing excitation state of the feeding network reversibly switched the turn motor network response from avoidance to orienting, and that 5-HT levels vary inversely with nutritional state. A simple model posits a critical role for 5-HT in control of the turn network response by corollary output of the feeding network. In it, 5-HT acts as an intrinsic neuromodulatory factor coupled to nutritional status and regulates approach-avoidance via the excitation state of the feeding network. Thus, the neuromodulator is a key organizing element in behavioral choice of approach or avoidance through its actions in promoting appetitive state, in large part via the homeostatic feeding network

    Nitric Oxide Potentiates cAMP-Gated Cation Current by Intracellular Acidification in Feeding Neurons of Pleurobranchaea

    No full text
    A pH-sensitive cAMP-gated cation current (INa,cAMP) is widely distributed in neurons of the feeding motor networks of gastropods. In the sea slug Pleurobranchaea this current is potentiated by nitric oxide (NO), which itself is produced by many feeding neurons. The action of NO is not dependent on either cGMP or cAMP signaling pathways. However, we found that NO potentiation of INa,cAMP in the serotonergic metacerebral cells could be blocked by intracellular injection of MOPS buffer (pH 7.2). In neurons injected with the pH indicator BCECF, NO induced rapid intracellular acidification to several tenths of a pH unit. Intracellular pH has not previously been identified as a specific target of NO, but in this system NO modulation of INa,cAMP via pHi may be an important regulator of the excitability of the feeding motor network
    corecore