1,978 research outputs found

    Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells

    Get PDF
    A device physics model has been developed for radial p-n junction nanorod solar cells, in which densely packed nanorods, each having a p-n junction in the radial direction, are oriented with the rod axis parallel to the incident light direction. High-aspect-ratio (length/diameter) nanorods allow the use of a sufficient thickness of material to obtain good optical absorption while simultaneously providing short collection lengths for excited carriers in a direction normal to the light absorption. The short collection lengths facilitate the efficient collection of photogenerated carriers in materials with low minority-carrier diffusion lengths. The modeling indicates that the design of the radial p-n junction nanorod device should provide large improvements in efficiency relative to a conventional planar geometry p-n junction solar cell, provided that two conditions are satisfied: (1) In a planar solar cell made from the same absorber material, the diffusion length of minority carriers must be too low to allow for extraction of most of the light-generated carriers in the absorber thickness needed to obtain full light absorption. (2) The rate of carrier recombination in the depletion region must not be too large (for silicon this means that the carrier lifetimes in the depletion region must be longer than ~10 ns). If only condition (1) is satisfied, the modeling indicates that the radial cell design will offer only modest improvements in efficiency relative to a conventional planar cell design. Application to Si and GaAs nanorod solar cells is also discussed in detail

    Effects of bubbles on the electrochemical behavior of hydrogen-evolving Si microwire arrays oriented against gravity

    Get PDF
    The size-distribution, coverage, electrochemical impedance, and mass-transport properties of H₂ gas-bubble films were measured for both planar and microwire-array platinized nâș-Si cathodes performing the hydrogen-evolution reaction in 0.50 M H₂SO₄ (aq). Inverted, planar nâș-Si/Ti/Pt cathodes produced large, stationary bubbles which contributed to substantial increases in ohmic potential drops. In contrast, regardless of orientation, microwire array nâș-Si/Ti/Pt cathodes exhibited a smaller layer of bubbles on the surface, and the formation of bubbles did not substantially increase the steady-state overpotential for H₂ (g) production. Experiments using an electroactive tracer species indicated that even when oriented against gravity, bubbles enhanced mass transport at the electrode surface. Microconvection due to growing and coalescing bubbles dominated effects due to macroconvection of gliding bubbles on Si microwire array cathodes. Electrodes that maintained a large number of small bubbles on the surface simultaneously exhibited low concentrations of dissolved hydrogen and small ohmic potential drops, thus exhibiting the lowest steady-state overpotentials. The results indicate that microstructured electrodes can operate acceptably for unassisted solar-driven water splitting in the absence of external convection and can function regardless of the orientation of the electrode with respect to the gravitational force vector

    Systems analysis of host-parasite interactions.

    Get PDF
    Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies

    Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting

    Get PDF
    A high-throughput method has been developed using a commercial piezoelectric inkjet printer for synthesis and characterization of mixed-metal oxide photoelectrode materials for water splitting. The printer was used to deposit metal nitrate solutions onto a conductive glass substrate. The deposited metal nitrate solutions were then pyrolyzed to yield mixed-metal oxides that contained up to eight distinct metals. The stoichiometry of the metal oxides was controlled quantitatively, allowing for the creation of vast libraries of novel materials. Automated methods were developed to measure the open-circuit potentials (Eoc), short-circuit photocurrent densities (Jsc), and current density vs. applied potential (J–E) behavior under visible light irradiation. The high-throughput measurement of Eoc is particularly significant because open-circuit potential measurements allow the interfacial energetics to be probed regardless of whether the band edges of the materials of concern are above, close to, or below the values needed to sustain water electrolysis under standard conditions. The Eoc measurements allow high-throughput compilation of a suite of data that can be associated with the composition of the various materials in the library, to thereby aid in the development of additional screens and to form a basis for development of theoretical guidance in the prediction of additional potentially promising photoelectrode compositions

    Photoluminescence-based measurements of the energy gap and diffusion length of Zn_3P_2

    Get PDF
    The steady-state photoluminescence spectra of zinc phosphide (Zn_3P_2) wafers have revealed a fundamental indirect band gap at 1.38 eV, in close proximity to the direct band gap at 1.50 eV. These values are consistent with the values for the indirect and direct band gaps obtained from analysis of the complex dielectric function deduced from spectroscopic ellipsometric measurements. Bulk minority carrier lifetimes of 20 ns were observed by time-resolved photoluminescence decay measurements, implying minority-carrier diffusion lengths of ≄ 7 ”m

    Spectral tuning of plasmon-enhanced silicon quantum dot luminescence

    Get PDF
    In the presence of nanoscale silver island arrays, silicon quantum dots exhibit up to sevenfold luminescence enhancements at emission frequencies that correspond to the collective dipole plasmon resonance frequency of the Ag island array. Using electron-beam lithography to alter the pitch and particle diameter, this wavelength-selective enhancement can be varied as the metal array resonance wavelength is tuned from 600 to 900 nm. The luminescence intensity enhancement upon coupling is attributed to an increase in the radiative decay rate of the silicon quantum dots

    Solar energy conversion

    Get PDF
    If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience

    Design of a scanning tunneling microscope for electrochemical applications

    Get PDF
    A design for a scanning tunneling microscope that is well suited for electrochemical investigations is presented. The construction of the microscope ensures that only the tunneling tip and the sample participate in electrochemical reactions. The design also allows rapid replacement of the tip or sample, and enables facile introduction of auxiliary electrodes for use in electrochemical experiments. The microscope utilizes stepper motor driven approach mechanics in order to achieve fully remote operation and to allow reproducible coarse control of tip/sample spacings for electrochemical experiments. Highly ordered pyrolytic graphite images at atomic resolution in air and aqueous solutions can be obtained with this microscope

    pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen^(2+/+) Contacts Through Use of Radial n^+p-Si Junction Microwire Array Photoelectrodes

    Get PDF
    The effects of introducing an n^+-doped emitter layer have been evaluated for both planar Si photoelectrodes and for radial junction Si microwire-array photoelectrodes. In contact with the pH-independent, one-electron, outer-sphere, methyl viologen redox system (denoted MV^(2+/+)), both planar and wire array p-Si photoelectrodes yielded open-circuit voltages, V_(oc), that varied with the pH of the solution. The highest V_(oc) values were obtained at pH = 2.9, with V_(oc) = 0.53 V for planar p-Si electrodes and V_(oc) = 0.42 V for vapor−liquid−solid catalyzed p-Si microwire array samples, under 60 mW cm^(−2) of 808 nm illumination. Increases in the pH of the electrolyte produced a decrease in V_(oc) by approximately −44 mV/pH unit for planar electrodes, with similar trends observed for the Si microwire array electrodes. In contrast, introduction of a highly doped, n^+ emitter layer produced V_(oc) = 0.56 V for planar Si electrodes and V_(oc) = 0.52 V for Si microwire array electrodes, with the photoelectrode properties in each system being essentially independent of pH over six pH units (3 < pH < 9). Hence, formation of an n^+ emitter layer not only produced nearly identical photovoltages for planar and Si microwire array photoelectrodes, but decoupled the band energetics of the semiconductor (and hence the obtainable photovoltage) from the value of the redox potential of the solution. The formation of radial junctions on Si microwire arrays thus provides an approach to obtaining Si-based photoelectrodes with high-photovoltages that can be used for a variety of photoelectrochemical processes, including potentially the hydrogen evolution reaction, under various pH conditions, regardless of the intrinsic barrier height and flat-band properties of the Si/liquid contact
    • 

    corecore