14 research outputs found

    Genotypic characterization of Streptococcus pneumoniae serotype 19F in Malaysia

    Get PDF
    Streptococcus pneumoniae is an epidemiologically important bacterial pathogen. Recently, we reported the antibiotic susceptibility patterns of a limited collection of pneumococcal isolates in Malaysia with a high prevalence of erythromycin resistant strains. In the present study, 55 of the pneumococcal isolates of serotype 19F were further analysed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The generated genotypic patterns were then correlated with the antibiograms previously reported. Forty-seven different PFGE profiles (PTs) were obtained, showing that the isolates were genetically diverse. MLST identified 16 sequence types (STs) with ST-236 being predominant (58.2%), followed by ST-81 (10.3%). Among the ST-236 isolates, 22 were erythromycin resistant S. pneumoniae (ERSP) and 15 were trimethoprim/sulfamethoxazole (TMP/SMX) resistant, while among ST-81, four isolates were ERSP and two were TMP/SMX resistant. The high prevalence of erythromycin resistant serotype 19F isolates of ST-236 in this study has also been reported in other North and South East Asian countries

    Prevalence of macrolide resistance and in vitro activities of six antimicrobial agents against clinical isolates of streptococcus pneumoniae from a multi-center surveillance in Malaysia

    Get PDF
    The in vitro activities of 6 antimicrobial agents against clinical isolates of Streptococcus pneumoniae (pneumococci) were investigated and the erythromycin minimum inhibitory concentrations (MICs) were correlated with the two major macrolide resistance determinants, mef(A) and erm(B). MICs of commonly used antibiotics as well as the presence of macrolide resistance determinant genes in all isolates were tested. Seventy one pneumococcal isolates collected at Institute for Medical Research (IMR) were included in this study. Phenotypic characterization, MIC determination using E-test strips and polymerase chain reactions for antibiotic resistance determination were included. Among the isolates, 25 (35.2%) isolates were erythromycin susceptible, 3 (4.2%) were intermediate and 42 (60.6%) were resistant. Fifty three isolates (74.7%) were found with mef(A) alone, 15 (21.1%) isolates with erm(B) + mef(A) combination and 3 (4.2%) isolates with none of the two genes. The in vitro activity of penicillin, amoxicillin clavulanic acid, ceftriaxone and cefotaxime is superior to trimethoprim-sulfamethoxazole and erythromycin. In conclusion, pneumococcal isolates in this study were highly susceptible to penicillin with very low MICs. However, a very high prevalence rate of erythromycin resistance was observed. Erythromycin resistant S. pneumoniae isolates with both mef(A) and erm(B) showed very high MICs ≥256 μg/mL

    Genotypically different clones of Staphylococcus aureus are diverse in the antimicrobial susceptibility patterns and biofilm formations

    Get PDF
    This study evaluated whether genotypically different clinical isolates of S. aureus have similar susceptibilities to individual antibiotics. It further aims to check the impact of biofilm on the in vitro activity of vancomycin, daptomycin, linezolid, and tigecycline against S. aureus clones. The study used a total of 60 different clinical MSSA and MRSA isolates. Susceptibilities were performed in planktonic cultures by macrobroth dilution and epsilon-test (E test) system. Biofilm production was determined using an adherent plate assay. The efficacy of antimicrobial activities against biofilms formation was checked using confocal laser scanning microscopy (CLSM). The study found that similar and different spa, MLST, and SCCmec types displayed high variation in their susceptibilities to antibiotics with tigecycline and daptomycin being the most effective. The biofilms were found resistant to high concentrations of most antibiotics tested with daptomycin being the most effective drug used in adhesive biofilms. A considerable difference exists among similar and various clone types against antibiotics tested. This variation could have contributed to the degree of virulence even within the same clonal genotype and enhanced heterogeneity in the infection potential. Thus, the development of a rapid and precise identification profile for each clone in human infections is important

    Allium stipitatum Extract Exhibits In Vivo Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus and Accelerates Burn Wound Healing in a Full-Thickness Murine Burn Model

    No full text
    The in vivo antibacterial and burn wound healing potency of Persian shallot bulbs (Allium stipitatum) were explored in a mice burn model infected with methicillin-resistant Staphylococcus aureus (MRSA). Hexane (ASHE) and dichloromethane (ASDE) extracts were tested. Female BALB/c mice were inflicted with third-degree thermal injury followed by infection with MRSA. ASHE and ASDE formulated with simple ointment base (SOB) at concentrations of 1%, 2%, and 5% (w/w) were topically applied to burn wounds twice a day for 20 days. Silver sulfadiazine (1%) served as drug positive control. Microbiological analysis was carried out on 1, 2, 3, 4, and 5 days postwounding (dpw) and histopathological analysis at the end of the experiment (20 dpw). Both ointments demonstrated strong antibacterial activity with complete elimination of MRSA at 48–72 h after infection. The rate of wound contraction was higher (95–100%) in mice groups treated with ASHE and ASDE ointments after 15 dpw. Histological analysis revealed significant increase (p<0.05) in epithelialization and collagenation in treated groups. The ASHE and ASDE were found to be relatively noncytotoxic and safe to Vero cell line (383.4 μg mL−1; 390.6 μg mL−1), suggesting the extracts as safe topical antibacterial as well as promising alternatives in managing thermal injuries

    Antifungal and antibiofilm activity of Persian shallot (Allium stipitatum Regel.) against clinically significant Candida spp.

    Get PDF
    Candida species are the most common cause of fungal infections that range from non-life-threatening mucocutaneous illness to life-threatening invasive processes that may involve virtually any organ. Such a broad range of infections requires an equally broad range of therapeutic approach. Persian shallot (Allium stipitatum Regel.) is a medicinal plant that has been widely used in tradition Persian medicine for various ailments. Allium stipitatum is also used in modern medicine and has been reported to have a range of health benefits including antibiotic (antifungal) properties. The present study assessed the in vitro anticandidal and antibiofilm potential of hexane (ASHE) and dichloromethane (ASDE) extracts of Allium stipitatum (Persian shallot) against planktonic and biofilm forms of 5 medically important Candida spp. Antifungal activity was assessed by disk diffusion, minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and time-kill assay. The antibiofilm activity of ASHE and ASDE against reference strain C. albicans ATCC 14053 was determined by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. The zone of inhibition ranged from 22 to 40 mm, while the MICs ranged from 8 to 32 µg mL-1. The MFCs of ASHE and ASDE were in the range of 16 to 32 µg mL-1 each respectively. Time-kill kinetics showed that both extracts were strongly fungicidal against planktonic cultures of C. albicans with ~ 1.45 log reduction in CFU at 4 h post-treatment (hpt). In addition, both ASHE and ASDE were shown to inhibit preformed C. albicans biofilms in a concentration-dependent manner. The results demonstrated that ASHE and ASDE were broad-spectrum in action, and could be developed as a promising alternative to synthetic antifungals in controlling infections due to Candida spp. of clinical significance

    Prevalence of Adhesion and Regulation of Biofilm-Related Genes in Different Clones of Staphylococcus aureus

    Get PDF
    Clinical information about genotypically different clones of biofilm-producing Staphylococcus aureus is largely unknown. We examined whether different clones of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA) differ with respect to staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) in biofilm formation. The study used 60 different types of spa and determined the phenotypes, the prevalence of the 13 MSCRAMM, and biofilm genes for each clone. The current investigation was carried out using a modified Congo red agar (MCRA), a microtiter plate assay (MPA), polymerase chain reaction (PCR), and reverse transcriptase polymerase chain reaction (RT-PCR). Clones belonging to the same spa type were found to have similar properties in adheringto thepolystyrene microtiter plate surface. However, their ability to produce slime on MCRA medium was different. PCR experiments showed that 60 clones of MSSA and MRSA were positive for 5 genes (out of 9 MSCRAMM genes). icaADBC genes were found to be present in all the 60 clones tested indicating a high prevalence, and these genes were equally distributed among the clones associated with MSSA and those with MRSA. The prevalence of other MSCRAMM genes among MSSA and MRSA clones was found to be variable. MRSA and MSSA gene expression (MSCRAMM and icaADBC) was confirmed by RT-PCR
    corecore