28 research outputs found
Interferometry of Aurigae: Characterization of the asymmetric eclipsing disk
We report on a total of 106 nights of optical interferometric observations of
the Aurigae system taken during the last 14 years by four beam
combiners at three different interferometric facilities. This long sequence of
data provides an ideal assessment of the system prior to, during, and after the
recent 2009-2011 eclipse. We have reconstructed model-independent images from
the 10 in-eclipse epochs which show that a disk-like object is indeed
responsible for the eclipse. Using new 3D, time-dependent modeling software, we
derive the properties of the F-star (diameter, limb darkening), determine
previously unknown orbital elements (, ), and access the global
structures of the optically thick portion of the eclipsing disk using both
geometric models and approximations of astrophysically relevant density
distributions. These models may be useful in future hydrodynamical modeling of
the system. Lastly, we address several outstanding research questions including
mid-eclipse brightening, possible shrinking of the F-type primary, and any
warps or sub-features within the disk.Comment: 105 pages, 57 figures. This is an author-created, un-copyedited
version of an article accepted for publication in Astrophysical Journal
Supplement Series. IOP Publishing Ltd is not responsible for any errors or
omissions in this version of the manuscript or any version derived from i
CHARA Michigan phase-tracker (CHAMP): a preliminary performance report
The CHARA Michigan Phase-tracker (CHAMP) is a real-time fringe tracker for the CHARA Array, a six-telescope long baseline optical interferometer on Mount Wilson, California. CHAMP has been optimized for tracking sensitivity at J, H, or K bands and is not meant as a science instrument itself. This ultimately results in maximum sensitivity for all the science beam combiners that benefit from stabilized fringes. CHAMP was designed, built, and tested in the laboratory at the University of Michigan and will be delivered to the CHARA Array in 2008. We present the final design of CHAMP, highlighting some its key characteristics, including a novel post-combination transport and imaging system. We also discuss testing and validation studies and present first closed-loop operation in the laboratory
Last technology and results from the IOTA interferometer
The infrared optical telescope array (IOTA), one of the most productive interferometers in term of science and new technologies was decommissioned in summer 2006. We discuss the testing of a low-resolution spectrograph coupled with the IOTA-3T integrated-optics beam combiner and some of the scientific results obtained from this instrument
In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse
Eclipses of the single-line spectroscopic binary star, epsilon Aurigae,
provide an opportunity to study the poorly-defined companion. We used the MIRC
beam combiner on the CHARA array to create interferometric images during
eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk
that is opaque and tilted, and therefore exclude alternative models for the
system. These data constrain the geometry and masses of the components,
providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010
CHARA Michigan phase-tracker (CHAMP): a preliminary performance report
The CHARA Michigan Phase-tracker (CHAMP) is a real-time fringe tracker for the CHARA Array, a six-telescope long baseline optical interferometer on Mount Wilson, California. CHAMP has been optimized for tracking sensitivity at J, H, or K bands and is not meant as a science instrument itself. This ultimately results in maximum sensitivity for all the science beam combiners that benefit from stabilized fringes. CHAMP was designed, built, and tested in the laboratory at the University of Michigan and will be delivered to the CHARA Array in 2008. We present the final design of CHAMP, highlighting some its key characteristics, including a novel post-combination transport and imaging system. We also discuss testing and validation studies and present first closed-loop operation in the laboratory
Michigan Infrared Combiner (MIRC): commissioning results at the CHARA Array
The Michigan Infrared Combiner (MIRC) has been designed for two primary goals: 1) imaging with all six CHARA telescopes simultaneously in the near-infrared, 2) direct detection of "hot Jupiter" exoplanets using precision closure phases. In September 2005, MIRC was commissioned on-sky at the CHARA Array on Mt. Wilson, CA, successfully combining light from 4 telescopes simultaneously. After a brief overview of MIRC features and design philosophy, we provide detailed description of key components and present results of laboratory tests. Lastly, we present first results from the commissioning run, focusing on engineering performance. We also present remarkable on-sky closure phase results from the first night of recorded data with the best-ever demonstrated closure phase stability and precision (ΔΦ = 0.03 degrees)
Last technology and results from the IOTA interferometer
The infrared optical telescope array (IOTA), one of the most productive interferometers in term of science and new technologies was decommissioned in summer 2006. We discuss the testing of a low-resolution spectrograph coupled with the IOTA-3T integrated-optics beam combiner and some of the scientific results obtained from this instrument
Fringe tracking at the IOTA interferometer
We describe the fringe-packet tracking software installed at the infrared optical telescope array (IOTA). Three independently developed fringe-packet tracking algorithms can be used to equalise the optical path lengths at the interferometer. We compare the performance of these three algorithms and show results obtained tracking fringes for three independent baselines on the sky