31 research outputs found

    Phenotypic Screen of Early-Developing Larvae of the Blood Fluke, Schistosoma mansoni, using RNA Interference

    Get PDF
    RNA interference (RNAi) represents the only method currently available for manipulating gene-specific expression in Schistosoma spp., although application of this technology as a functional genomic profiling tool has yet to be explored. In the present study 32 genes, including antioxidants, transcription factors, cell signaling molecules and metabolic enzymes, were selected to determine if gene knockdown by RNAi was associated with morphologically definable phenotypic changes in early intramolluscan larval development. Transcript selection was based on their high expression in in vitro cultured S. mansoni primary sporocysts and/or their potential involvement in developmental processes. Miracidia were allowed to transform to sporocysts in the presence of synthesized double-stranded RNAs (dsRNAs) and cultivated for 7 days, during which time developing larvae were closely observed for phenotypic changes including failure/delay in transformation, loss of motility, altered growth and death. Of the phenotypes evaluated, only one was consistently detected; namely a reduction in sporocyst size based on length measurements. The size-reducing phenotype was observed in 11 of the 33 (33%) dsRNA treatment groups, and of these 11 phenotype-associated genes (superoxide dismutase, Smad1, RHO2, Smad2, Cav2A, ring box, GST26, calcineurin B, Smad4, lactate dehydrogenase and EF1α), only 6 demonstrated a significant and consistent knockdown of specific transcript expression. Unexpectedly one phenotype-linked gene, superoxide dismutase (SOD), was highly induced (∼1600-fold) upon dsRNA exposure. Variation in dsRNA-mediated silencing effects also was evident in the group of sporocysts that lacked any definable phenotype. Out of 22 nonphenotype-expressing dsRNA treatments (myosin, PKCB, HEXBP, calcium channel, Sma2, RHO1, PKC receptor, DHHC, PepcK, calreticulin, calpain, Smeg, 14.3.3, K5, SPO1, SmZF1, fibrillarin, GST28, GPx, TPx1, TPx2 and TPx2/TPx1), 12 were assessed for the transcript levels. Of those, 6 genes exhibited consistent reductions in steady-state transcript levels, while expression level for the rest remained unchanged. Results demonstrate that the efficacy of dsRNA-treatment in producing consistent phenotypic changes and/or altered gene expression levels in S. mansoni sporocysts is highly dependent on the selected gene (or the specific dsRNA sequence used) and the timing of evaluation after treatment. Although RNAi holds great promise as a functional genomics tool for larval schistosomes, our finding of potential off-target or nonspecific effects of some dsRNA treatments and variable efficiencies in specific gene knockdown indicate a critical need for gene-specific testing and optimization as an essential part of experimental design, execution and data interpretation

    Role of the Endogenous Antioxidant System in the Protection of Schistosoma mansoni Primary Sporocysts against Exogenous Oxidative Stress

    Get PDF
    Antioxidants produced by the parasite Schistosoma mansoni are believed to be involved in the maintenance of cellular redox balance, thus contributing to larval survival in their intermediate snail host, Biomphalaria glabrata. Here, we focused on specific antioxidant enzymes, including glutathione-S-transferases 26 and 28 (GST26 and 28), glutathione peroxidase (GPx), peroxiredoxin 1 and 2 (Prx1 and 2) and Cu/Zn superoxide dismutase (SOD), known to be involved in cellular redox reactions, in an attempt to evaluate their endogenous antioxidant function in the early-developing primary sporocyst stage of S. mansoni. Previously we demonstrated a specific and consistent RNA interference (RNAi)-mediated knockdown of GST26 and 28, Prx1 and 2, and GPx transcripts, and an unexpected elevation of SOD transcripts in sporocysts treated with gene-specific double-stranded (ds)RNA. In the present followup study, in vitro transforming sporocysts were exposed to dsRNAs for GST26 and 28, combined Prx1/2, GPx, SOD or green-fluorescent protein (GFP, control) for 7 days in culture, followed by assessment of the effects of specific dsRNA treatments on protein levels using semi-quantitative Western blot analysis (GST26, Prx1/2 only), and larval susceptibility to exogenous oxidative stress in in vitro killing assays. Significant decreases (80% and 50%) in immunoreactive GST26 and Prx1/2, respectively, were observed in sporocysts treated with specific dsRNA, compared to control larvae treated with GFP dsRNA. Sporocysts cultured with dsRNAs for GST26, GST28, Prx1/2 and GPx, but not SOD dsRNA, were significantly increased in their susceptibility to H2O2 oxidative stress (60–80% mortalities at 48 hr) compared to GFP dsRNA controls (∼18% mortality). H2O2-mediated killing was abrogated by bovine catalase, further supporting a protective role for endogenous sporocyst antioxidants. Finally, in vitro killing of S. mansoni sporocysts by hemocytes of susceptible NMRI B. glabrata snails was increased in larvae treated with Prx1/2, GST26 and GST28 dsRNA, compared to those treated with GFP or SOD dsRNAs. Results of these experiments strongly support the hypothesis that endogenous expression and regulation of larval antioxidant enzymes serve a direct role in protection against external oxidative stress, including immune-mediated cytotoxic reactions. Moreover, these findings illustrate the efficacy of a RNAi-type approach in investigating gene function in larval schistosomes

    Correction to: Sequence and structural variation in the genome of the Biomphalaria glabrata embryonic (Bge) cell line

    No full text
    Following publication of the original article [], the authors reported an error in figure 1

    Sequence and structural variation in the genome of the Biomphalaria glabrata embryonic (Bge) cell line

    No full text
    Abstract Background The aquatic pulmonate snail Biomphalaria glabrata is a significant vector and laboratory host for the parasitic flatworm Schistosoma mansoni, an etiological agent for the neglected tropical disease schistosomiasis. Much is known regarding the host-parasite interactions of these two organisms, and the B. glabrata embryonic (Bge) cell line has been an invaluable resource in these studies. The B. glabrata BB02 genome sequence was recently released, but nothing is known of the sequence variation between this reference and the Bge cell genome, which has likely accumulated substantial genetic variation in the ~50 years since its isolation. Results Here, we report the genome sequence of our laboratory subculture of the Bge cell line (designated Bge3), which we mapped to the B. glabrata BB02 reference genome. Single nucleotide variants (SNVs) were predicted and focus was given to those SNVs that are most likely to affect the structure or expression of protein-coding genes. Furthermore, we have highlighted and validated high-impact SNVs in genes that have often been studied using Bge cells as an in vitro model, and other genes that may have contributed to the immortalization of this cell line. We also resolved representative karyotypes for the Bge3 subculture, which revealed a mixed population exhibiting substantial aneuploidy, in line with previous reports from other Bge subcultures. Conclusions The Bge3 genome differs from the B. glabrata BB02 reference genome in both sequence and structure, and these are likely to have significant biological effects. The availability of the Bge3 genome sequence, and an awareness of genomic differences with B. glabrata, will inform the design of experiments to understand gene function in this unique in vitro snail cell model. Additionally, this resource will aid in the development of new technologies and molecular approaches that promise to reveal more about this schistosomiasis-transmitting snail vector
    corecore