5 research outputs found

    The effect of acute equine temporomandibular joint inflammation on response to rein-tension and kinematics

    Get PDF
    BackgroundAlthough the temporomandibular joint (TMJ) is the major contact point between the reins in the riders’ hand, the bit in the mouth, and the rest of the horse under saddle, the role of inflammation of this joint on equine locomotion and rein tension is unknown.ObjectiveTo determine the effect of acute TMJ inflammation on rein-tension and horse movement when horses were long-reined on a treadmill.Study designA randomized, controlled, cross-over design.MethodsFive horses were trained by one clinician to walk and trot on a treadmill wearing long-reining equipment instrumented with a rein-tension device and reflective optical tracking markers. Subjective assessment of horse’s dominant side, and movement, were determined without rein-tension (free walk and trot); and with rein-tension (long-reined walk and trot). Continuous rein-force data from both sides were collected over ~60s from each trial. Movement was recorded using a 12-camera optical motion capture system. One randomly assigned TMJ was subsequently injected with lipopolysaccharide and the treadmill tests repeated by investigators blinded to treatment side. A second, identical assessment was performed 10 days later with the opposite TMJ being the target of intervention.ResultsAll horses showed reduced rein-tension on the injected (inflamed) side. Increased rein-tension was required on the non-injected side at trot, to maintain them in the correct position on the treadmill post-injection. The only kinematic variable to show any significant change due to rein tension or TMJ inflammation during the walk or trot was an increase in forward head tilt in the presence of rein tension in the trot after injection.Main limitationsLow number of horses and investigation of response to acute inflammation only.ConclusionTMJ inflammation changed, subjectively and objectively, the response to rein-input, but the horses did not become lame

    Contrast arthrography of the equine temporomandibular joint

    Get PDF
    BackgroundDisorders of the equine temporomandibular joint (TMJ) cause clinical problems and detailed investigations of this joint are becoming more common. Specialist radiographic projections have the potential to highlight osseous abnormalities; however, the ability to assess the intra-articular soft tissue structures is currently limited to computed tomography (with, or without contrast enhancement) or magnetic resonance imaging. Both modalities are expensive and not readily accessible.ObjectiveTo develop a technique of contrast arthrography of both compartments of the equine TMJ in cadavers and then perform the refined technique in three living horses as a proof-of-principle.Study designA descriptive, experimental, study.MethodsContrast arthrography of the discomandibular and discotemporal joint compartments of both TMJs was performed in 12 cadaveric equine heads using needles placed in the caudal pouches of the respective joint compartments. Radiographs were taken using previously published techniques, repeated with the mouth open and after air had been injected into the joints, to perform a double-contrast study. The TMJs of three healthy horses were subsequently examined to determine the validity of the procedure in live animals.ResultsSingle and double-contrast arthrography allowed delineation of the dorsal and ventral surfaces of the intra-articular disc in addition to filling the rostral and caudal joint pouches of the independent joint compartments. Contrast extravasation was common, and in two instances iatrogenic disc penetration resulted in the false diagnosis of pathologic disc perforation. The techniques were well tolerated in all three live horses.Main limitationsLow number of horses.ConclusionContrast arthrography allows interpretation of intra-articular soft tissue structures, but caution is advised in diagnosing intra-articular disc perforation. Even with experience, accessing the discomandibular joint can be challenging

    The effect of acute equine temporomandibular joint inflammation on response to rein-tension and kinematics

    Get PDF
    BackgroundAlthough the temporomandibular joint (TMJ) is the major contact point between the reins in the riders’ hand, the bit in the mouth, and the rest of the horse under saddle, the role of inflammation of this joint on equine locomotion and rein tension is unknown.ObjectiveTo determine the effect of acute TMJ inflammation on rein-tension and horse movement when horses were long-reined on a treadmill.Study designA randomized, controlled, cross-over design.MethodsFive horses were trained by one clinician to walk and trot on a treadmill wearing long-reining equipment instrumented with a rein-tension device and reflective optical tracking markers. Subjective assessment of horse’s dominant side, and movement, were determined without rein-tension (free walk and trot); and with rein-tension (long-reined walk and trot). Continuous rein-force data from both sides were collected over ~60s from each trial. Movement was recorded using a 12-camera optical motion capture system. One randomly assigned TMJ was subsequently injected with lipopolysaccharide and the treadmill tests repeated by investigators blinded to treatment side. A second, identical assessment was performed 10 days later with the opposite TMJ being the target of intervention.ResultsAll horses showed reduced rein-tension on the injected (inflamed) side. Increased rein-tension was required on the non-injected side at trot, to maintain them in the correct position on the treadmill post-injection. The only kinematic variable to show any significant change due to rein tension or TMJ inflammation during the walk or trot was an increase in forward head tilt in the presence of rein tension in the trot after injection.Main limitationsLow number of horses and investigation of response to acute inflammation only.ConclusionTMJ inflammation changed, subjectively and objectively, the response to rein-input, but the horses did not become lame

    Synovium extra cellular matrices seeded with transduced mesenchymal stem cells stimulate chondrocyte maturation in vitro and cartilage healing in clinically-induced rat-knee lesions in vivo.

    No full text
    Osteoarthritis (OA) is a progressive disease associated with cartilage injury and its inherently limited repair capability. Synovium-based cellular constructs (sConstructs) are proposed as possible treatments. Equine sConstructs were produced from decellularized synovium-based extracellular matrix scaffolds (sECM) seeded with synovium-derived mesenchymal stem cells (sMSC), and engineered to express green fluorescent protein (GFP), or bone morphogenetic protein-2 (BMP-2). Survival, distribution, and chondrogenic potential of the sConstructs in vitro and in vivo were assessed. sConstructs in co-culture with chondrocytes increased chondrocyte proliferation, viability, and Col II production, greatest in BMP-2-sConstructs. Chondrocyte presence increased the production of hyaluronic acid (HA), proteoglycan (PG), and BMP-2 by the sConstructs in a positive feedback loop. sECM alone, or GFP- or BMP-2-sConstructs were implanted in synovium adjacent to clinically created full-thickness rat-knee cartilage lesions. At 5 weeks, the lesion area and implants were resected. Gross anatomy, adjacent articulate cartilage growth and subchondral bone repair were scored; and peripheral, central and cartilage lesion measurements taken. For all scores and measurements, sConstruct implants were significantly greater than controls, greatest with the BMP-2-sConstructs. Immunohistochemistry demonstrated migration of endogenous cells into the sECM, with greater cellularity in the constructs with intense positive GFP staining confirming engraftment of implanted sMSC and continued gene expression. In summary, exposing cartilage to sConstructs was chondrogenic in vitro and in vivo, and resulted in substantially increased growth in vivo. This effect was mediated, in part, by soluble ECM and cell factors and upregulation of anabolic growth proteins, such as BMP-2. This work is "proof of concept" that sConstructs surgically implanted adjacent to cartilage damage can significantly improve cartilage and subchondral bone repair, and potentially prevent the progression of OA
    corecore