4,025 research outputs found

    Third generation sfermions decays into Z and W gauge bosons: full one-loop analysis

    Full text link
    The complete one-loop radiative corrections to third generation scalar fermions into gauge bosons Z and W^\pm is considered. We focus on \wt{f}_2 \to Z \wt{f}_1 and \wt{f}_i \to W^\pm \wt{f'}_j (f,f'=t,b). We include both SUSY-QCD, QED and full electroweak corrections. It is found that the electroweak corrections can be of the same order as the SUSY-QCD corrections. The two sets of corrections interfere destructively in some region of parameter space. The full one loop correction can reach 10% in some SUGRA scenario, while in model independent analysis like general MSSM, the one loop correction can reach 20% for large \tan\beta and large trilinear soft breaking terms A_b.Comment: Latex file, 18 pages, 8 figures, version to appear in PR

    Three-dimensional Roton-Excitations and Supersolid formation in Rydberg-excited Bose-Einstein Condensates

    Full text link
    We study the behavior of a Bose-Einstein condensate in which atoms are weakly coupled to a highly excited Rydberg state. Since the latter have very strong van der Waals interactions, this coupling induces effective, nonlocal interactions between the dressed ground state atoms, which, opposed to dipolar interactions, are isotropically repulsive. Yet, one finds partial attraction in momentum space, giving rise to a roton-maxon excitation spectrum and a transition to a supersolid state in three-dimensional condensates. A detailed analysis of decoherence and loss mechanisms suggests that these phenomena are observable with current experimental capabilities.Comment: 4 pages, 5 figure

    Size-dependent electronic-transport mechanism and sign reversal of magnetoresistance in Nd0.5Sr0.5CoO3

    Full text link
    A detailed investigation of electronic-transport properties of Nd0.5Sr0.5CoO3 has been carried out as a function of grain size ranging from micrometer order down to an average size of 28 nm. Interestingly, we observe a size induced metal-insulator transition in the lowest grain size sample while the bulk-like sample is metallic in the whole measured temperature regime. An analysis of the temperature dependent resistivity in the metallic regime reveals that the electron-electron interaction is the dominating mechanism while other processes like electron-magnon and electron-phonon scatterings are also likely to be present. The fascinating observation of enhanced low temperature upturn and minimum in resistivity on reduction of grain size is found due to electron-electron interaction (quantum interference effect). This effect is attributed to enhanced disorder on reduction of grain size. Interestingly, we observed a cross over from positive to negative magnetoresistance in the low temperature regime as the grain size is reduced. This observed sign reversal is attributed to enhanced phase separation on decreasing the grain size of the cobaltite

    Tool Wear and its Effect on Residual Tensile Strength in Drilling of Quartz Cyanate Ester Polymeric Composite

    Get PDF
    Quartz-Fibre-Reinforced cyanate ester Plastics (QFRP) has superior performance in terms of mechanical, electromagnetic properties and are being widely used in military applications. Drilling is the general machining process for making hole to join the composite part to another sub-assembly. This study presents an influence of optimized drilling parameters on carbide tool wear and its impact on hole characteristics in QFRP composite. The aim is to achieve the optimum use of drill during the drilling process from application perspective without compromising the quality. In addition, the effect of tool wear and its impact on residual tensile strength of quartz composite are studied. The dominant wear mechanism observed is flank wear caused by the abrasive nature of the quartz fibre. The tool wear and delamination factor after drilling 200 holes are 186 µm and 1.40 respectively. The residual strength is affected by the tool wear due to relatively poor interlaminar property between fiber and resin in this quartz composite. The residual strength of quartz specimen drilled with the tool after drilling 200 holes is 14 % lower than the property of specimen drilled with fresh drill. The highlight of the present work is a combined analysis of wear in the tool, delamination induced and residual strength of quartz specimen. The results of this study strengthen the understanding of the drilling process of quartz polymeric composite material in aerospace applications

    Effects of CP Violation on Event Rates in the Direct Detection of Dark Matter

    Full text link
    A full analytic analysis of the effects of CP violating phases on the event rates in the direct detection of dark matter in the scattering of neutralinos from nuclear targets is given. The analysis includes CP violating phases in softly broken supersymmetry in the framework of the minimal supersymmetric standard model (MSSM) when generational mixings are ignored. A numerical analysis shows that large CP violating phases including the constraints from the experimental limits on the neutron and the electron electric dipole moment (EDM) can produce substantial effects on the event rates in dark matter detectors.Comment: 17 pages, LaTex, including 2 figures; revised version to appear in the Physical Review

    Large evolution of the bilinear Higgs coupling parameter in SUSY models and reduction of phase sensitivity

    Get PDF
    The phases in a generic low-energy supersymmetric model are severely constrained by the experimental upper bounds on the electric dipole moments of the electron and the neutron. Coupled with the requirement of radiative electroweak symmetry breaking, this results in a large degree of fine tuning of the phase parameters at the unification scale. In supergravity type models, this corresponds to very highly tuned values for the phases of the bilinear Higgs coupling parameter BB and the universal trilinear coupling A0A_0. We identify a cancellation/enhancement mechanism associated with the renormalization group evolution of BB, which, in turn, reduces such fine-tuning quite appreciably without taking recourse to very large masses for the supersymmetric partners. We find a significant amount of reduction of this fine-tuning in nonuniversal gaugino mass models that do not introduce any new phases.Comment: Version to appear in Phys.Rev.D. Insignificant changes like a few typos corrected. 26 pages, 7 figures, LaTe

    Detecting Physics At The Post-GUT And String Scales By Linear Colliders

    Get PDF
    The ability of linear colliders to test physics at the post-GUT scale is investigated. Using current estimates of measurements available at such accelerators, it is seen that soft breaking masses can be measured with errors of about (1-20)%. Three classes of models in the post-GUT region are examined: models with universal soft breaking masses at the string scale, models with horizontal symmetry, and string models with Calabi-Yau compactifications. In each case, linear colliders would be able to test directly theoretical assumptions made at energies beyond the GUT scale to a good accuracy, distinguish between different models, and measure parameters that are expected to be predictions of string models.Comment: Latex, 21 pages, no figure

    Thermodynamic Geometric Stability of Quarkonia states

    Full text link
    We compute exact thermodynamic geometric properties of the non-abelian quarkonium bound states from the consideration of one-loop strong coupling. From the general statistical principle, the intrinsic geometric nature of strongly coupled QCD is analyzed for the Columbic, rising and Regge rotating regimes. Without any approximation, we have obtained the non-linear mass effect for the Bloch-Nordsieck rotating strongly coupled quarkonia. For a range of physical parameters, we show in each cases that there exists a well-defined, non-degenerate, curved, intrinsic Riemannian manifold. As the gluons become softer and softer, we find in the limit of the Bloch-Nordsieck resummation that the strong coupling obtained from the Sudhakov form factor possesses exact local and global thermodynamic properties of the underlying mesons, kaons and DsD_s particles.Comment: 45 pages, 17 figures, Keywords: Thermodynamic Geometry, Quarkonia, Massive Quarks, QCD Form Factor. PACS: 02.40.-k; 14.40.Pq; 12.40.Nn; 14.70.D

    WMAP Data and Recent Developments in Supersymmetric Dark Matter

    Full text link
    A brief review is given of the recent developments in the analyses of supersymmetric dark matter. Chief among these is the very accurate determination of the amount of cold dark matter in the universe from analyses using WMAP data. The implications of this data for the mSUGRA parameter space are analyzed. It is shown that the data admits solutions on the hyperbolic branch (HB) of the radiative breaking of the electroweak symmetry. A part of the hyperbolic branch lies in the so called inversion region where the LSP neutralino χ10\chi_1^0 becomes essentially a pure Higgsino and degenerate with the next to the lightest neutralino χ20\chi_2^0 and the light chargino χ1±\chi_1^{\pm}. Thus some of the conventional signals for the observation of supersymmetry at colliders (e.g., the missing energy signals) do not operate in this region. On the other hand the inversion region contains a high degree of degeneracy of χ10\chi_1^0, χ20\chi_2^0, χ1±\chi_1^{\pm} leading to coannihilations which allow for the satisfaction of the WMAP relic density constraints deep on the hyperbolic branch. Further, an analysis of the neutralino-proton cross sections in this region reveals that this region can still be accessible to dark matter experiments in the future. Constraints from gμ2g_{\mu}-2 and from Bs0μ+μB^0_s\to \mu^+\mu^- are discussed. Future prospects are also discussed.Comment: 15 pages Latex. Invited talk at the IV International Conference on Non-accelerator New Physics (NANP'03), Dubna, Russia, June 23-28, 200
    corecore