12 research outputs found
Rheology in dense assemblies of spherocylinders: frictional vs. frictionless
Using molecular dynamics simulations, we study the steady shear flow of dense
assemblies of anisotropic spherocylindrical particles of varying aspect ratios.
Comparing frictionless and frictional particles we discuss the specific role of
frictional inter-particle forces for the rheological properties of the system.
In the frictional system we evidence a shear-thickening regime, similar to that
for spherical particles. Furthermore, friction suppresses alignment of the
spherocylinders along the flow direction. Finally, the jamming density in
frictional systems is rather insensitive to variations in aspect-ratio, quite
contrary to what is known from frictionless systems
Rheology in dense assemblies of spherocylinders: Frictional vs. frictionless
Using molecular dynamics simulations, we study the steady shear flow of dense assemblies of anisotropic spherocylindrical particles of varying aspect ratios. Comparing frictionless and frictional particles we discuss the specific role of frictional inter-particle forces for the rheological properties of the system. In the frictional system we evidence a shear-thickening regime, similar to that for spherical particles. Furthermore, friction suppresses the alignment of the spherocylinders along the flow direction. Finally, the jamming density in frictional systems is rather insensitive to variations in aspect ratio, quite contrary to what is known from frictionless systems
Recommended from our members
Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue.
Maximizing the speed and efficiency at which single cells can be liberated from tissues would dramatically advance cell-based diagnostics and therapies. Conventional methods involve numerous manual processing steps and long enzymatic digestion times, yet are still inefficient. In previous work, we developed a microfluidic device with a network of branching channels to improve the dissociation of cell aggregates into single cells. However, this device was not tested on tissue specimens, and further development was limited by high cost and low feature resolution. In this work, we utilized a single layer, laser micro-machined polyimide film as a rapid prototyping tool to optimize the design of our microfluidic channels to maximize dissociation efficiency. This resulted in a new design with smaller dimensions and a shark fin geometry, which increased recovery of single cells from cancer cell aggregates. We then tested device performance on mouse kidney tissue, and found that optimal results were obtained using two microfluidic devices in series, the larger original design followed by the new shark fin design as a final polishing step. We envision our microfluidic dissociation devices being used in research and clinical settings to generate single cells from various tissue specimens for diagnostic and therapeutic applications
Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue.
Maximizing the speed and efficiency at which single cells can be liberated from tissues would dramatically advance cell-based diagnostics and therapies. Conventional methods involve numerous manual processing steps and long enzymatic digestion times, yet are still inefficient. In previous work, we developed a microfluidic device with a network of branching channels to improve the dissociation of cell aggregates into single cells. However, this device was not tested on tissue specimens, and further development was limited by high cost and low feature resolution. In this work, we utilized a single layer, laser micro-machined polyimide film as a rapid prototyping tool to optimize the design of our microfluidic channels to maximize dissociation efficiency. This resulted in a new design with smaller dimensions and a shark fin geometry, which increased recovery of single cells from cancer cell aggregates. We then tested device performance on mouse kidney tissue, and found that optimal results were obtained using two microfluidic devices in series, the larger original design followed by the new shark fin design as a final polishing step. We envision our microfluidic dissociation devices being used in research and clinical settings to generate single cells from various tissue specimens for diagnostic and therapeutic applications