20 research outputs found

    Etiology of Diarrhea in Older Children, Adolescents and Adults: A Systematic Review

    Get PDF
    Diarrhea is an important cause of illness and death around the world and among people of all ages, but unfortunately we often do not know what specific bacterium or virus causes the illness. We conducted a review of the scientific literature with the goal of finding published studies that identified bacteria and viruses among patients with diarrhea in the community and in hospital settings. We initially found nearly 26,000 papers on this topic but narrowed the list to 22 studies that met all of our specific criteria for inclusion in our review. Among patients hospitalized for diarrhea, E coli and Vibrio cholerae were found in more than 49% of people living in middle income and poor countries. Among patients who sought care from their doctor on an outpatient basis, Salmonella spp., Shigella spp., and E. histolytica were most often found. In our review we focused on the differences in the distribution of pathogens between patients in inpatient vs. outpatient settings because these estimates may best approximate what we would expect to see if the distribution were applied to global estimates of diarrhea deaths vs. uncomplicated illnesses

    Impact of Antibodies Against Polyethylene Glycol on the Pharmacokinetics of PEGylated Asparaginase in Children with Acute Lymphoblastic Leukaemia: A Population Pharmacokinetic Approach

    No full text
    Background and objectives!#!Besides allergic reactions, antibodies against polyethylene glycol (PEG) have been associated with reduced PEG-asparaginase (PEG-ASNase) activity. Population pharmacokinetics (popPK) allow for an in-depth investigation of the influence of anti-PEG antibodies on PEG-ASNase pharmacokinetics.!##!Methods!#!PEG-ASNase activity (6261 samples) and anti-PEG antibodies (2082/6412 samples prior to/post administration) in 1444 children with acute lymphoblastic leukaemia treated in the AIEOP-BFM ALL 2009 trial were evaluated. Patients received two doses of PEG-ASNase during induction (2500 U/m!##!Results!#!High pre-existing levels of anti-PEG antibodies increase the initial drug clearance. Analysed separately, both anti-PEG IgG!##!Conclusion!#!Pre-existing antibodies against PEG-ASNase significantly increased the initial clearance in a subgroup of patients showing high antibody levels. (Trial registration: EU clinical trials register; EudraCT No: 2007-004270-43; first registered 23 October 2009.)

    Population Pharmacokinetics of Liposomal Amphotericin B in Pediatric Patients with Malignant Diseases

    No full text
    A population pharmacokinetic model of liposomal amphotericin B (L-AmB) in pediatric patients with malignant diseases was developed and evaluated. Blood samples were collected from 39 pediatric oncology patients who received multiple doses of L-AmB with a dose range from 0.8 to 5.9 mg/kg of body weight/day. The patient cohort had an average age of 7 years (range, 0.2 to 17 years) and weighed an average of 28.8 ± 19.8 kg. Population pharmacokinetic analyses were performed with NONMEM software. Pharmacokinetic parameters, interindividual variability (IIV), between-occasion variability (BOV), and intraindividual variability were estimated. The influence of patient characteristics on the pharmacokinetics of L-AmB was explored. The final population pharmacokinetic model was evaluated by using a bootstrap sampling technique. The L-AmB plasma concentration-time data was described by a two-compartment pharmacokinetic model with zero-order input and first-order elimination. The population mean estimates of clearance (CL) and volume of distribution in the central compartment (V(1)) were 0.44 liters/h and 3.12 liters, respectively, and exhibited IIV (CL, 10%) and significant BOV (CL, 46% and V(1), 56%). The covariate models were CL (liters/h) = 0.44 · e(0.0152)( ·)((WT) (−) (21)()) and V(1) (liters) = 3.12 · e(0.0241)( · )((WT) (−) (21)), where WT is the patient's body weight (kg) centered on the study population cohort median of 21 kg. Model evaluation by the bootstrap procedure indicated that the full pharmacokinetic model was robust and parameter estimates were accurate. In conclusion, the pharmacokinetics of L-AmB in pediatric oncology patients were adequately described by the developed population model. The model has been evaluated and can be used in the design of rational dosing strategies for L-AmB antifungal therapy in this special population

    DIPG-07. HIGH THROUGHPUT DRUG SCREENING IDENTIFIES POTENTIAL NEW THERAPIES FOR DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPGs)

    No full text
    DIPGs are the most devastating of all brain tumors. There are no effective treatments, hence almost all children will die of their tumor within 12 months. There is an urgent need for novel effective therapies for this aggressive tumor. We performed a high-throughput drug screen with over 3,500 biologically active, clinically approved compounds against a panel of neurosphere-forming DIPG cells. We identified 7 compounds- auranofin, fenretinide, ivermectin, lanatoside, parthenolide, SAHA and mefloquine- that were confirmed to have potent anti-tumor activity against a panel of DIPG-neurospheres, with minimal effect on normal cells. Using cytotoxicity and clonogenic assays, we found that these drugs were able to inhibit DIPG-neurosphere proliferation and colony formation in-vitro. To determine whether the in-vitro efficacy could be replicated in-vivo, we tested the activity of each of these compounds in an orthotopic DIPG model. Of the agents tested, fenretinide and SAHA were the most active anti-tumor agents, significantly enhancing the survival of tumor bearing animals. Mechanistic studies showed fenretinide enhancing apoptotic cell death of DIPG cells via inhibition of PDGFRa transcription and downregulation of the PI3K/AKT/MTOR pathway. We therefore examined the therapeutic efficacy of fenretinide using a second orthotopic model with PDGFRa amplification. We used two different Fenretinide formulations (LYM-X-Sorb and NanoMicelle) which were found to enhance survival. Fenretinide is clinically available with safety data in children. Validation of the activity of Fenretinide in PDGFRa-amplified or overexpressed DIPGs will lead to the development of a clinical trial, allowing the advancement of fenretinide as potentially the first active therapy for DIPG

    Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: Towards individualized dosing

    No full text
    Background and Objectives: The wide variability in pharmacokinetics of busulfan in children is one factor influencing outcomes such as toxicity and event-free survival.Ameta-analysis was conducted to describe the pharmacokinetics of busulfan in patients from 0.1 to 26 years of age, elucidate patient characteristics that explain the variability in exposure between patients and optimize dosing accordingly. Patients and Methods: Data were collected from 245 consecutive patients (from 3 to 100 kg) who underwent haematopoietic stem cell transplantation (HSCT) in four participating centres. The inter-patient, interoccasion and residual variability in the pharmacokinetics of busulfan were estimated with a population analysis using the nonlinear mixed-effects modelling software NONMEM VI. Covariates were selected on the basis of their known or theoretical relationships with busulfan pharmacokinetics and were plotted independently against the individual pharmacokinetic parameters and the weighted residuals of the model without covariates to visualize relations. Potential covariates were formally tested in the model. Results: In a two-compartment model, body weight was the most predictive covariate for clearance, volume of distribution and inter-compartmental clearance and explained 65%, 75% and 40% of the observed variability, respectively. The relationship between body weight and clearance was characterized best using an allometric equation with a scaling exponent that changed with body weight from 1.2 in neonates to 0.55 in young adults. This implies that an increase in body weight in neonates results in a larger increase in busulfan clearance than an increase in body weight in older children or adults. Clearance on the first day was 12% higher than that of subsequent days (p < 0.001). Inter-occasion variability on clearance was 15%between the 4 days. Based on the final pharmacokinetic-model, an individualized dosing nomogram was developed. Conclusions: The model-based individual dosing nomogram is expected to result in predictive busulfan exposures in patients ranging between 3 and 65 kg and thereby to a safer and more effective conditioning regimen for HSCT in children
    corecore