40 research outputs found

    Gene-gene Interaction Analyses for Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF) is a heritable disease that affects more than thirty million individuals worldwide. Extensive efforts have been devoted to the study of genetic determinants of AF. The objective of our study is to examine the effect of gene-gene interaction on AF susceptibility. We performed a large-scale association analysis of gene-gene interactions with AF in 8,173 AF cases, and 65,237 AF-free referents collected from 15 studies for discovery. We examined putative interactions between genome-wide SNPs and 17 known AF-related SNPs. The top interactions were then tested for association in a

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems

    Chemical composition, antioxidant potential, macromolecule damage and neuroprotective activity of Convolvulus pluricaulis

    No full text
    Herbal medicines are known to mitigate radical induced cell damage. Hence identification and scientific validation of herbal medicines contribute to better use in Ayurvedic/Unani research. In the present study, we investigated antioxidant and anti-apoptotic properties of Convolvulus pluricaulis (C. pluricaulis). C. pluricaulis exhibited antioxidant potential evident by free radical scavenging activities. C. pluricaulis pretreatment inhibited H2O2 induced macromolecule damage such as plasmid DNA damage and AAPH induced oxidation of bovine serum albumin and lipid peroxidation of rat hepatic tissues. Further to identify the neuroprotective properties of C. pluricaulis, SHSY5Y cells were treated with H2O2 with or without pretreatment of C. pluricaulis. The C. pluricaulis pretreatment at 50 μg/ml dose exhibited 50% cell survival against 100 μM H2O2 challenge for 24 h and it also decreased the lactate dehydrogenase leakage. Further C. pluricaulis pretreatment restored and regulated the antioxidant and apoptosis markers such as SOD, CAT, p53, and caspase-3 and inhibited, reactive oxygen species generation and depolarization of the mitochondrial membrane. C. pluricaulis possess a high content of flavonoids and polyphenols and GC-MS and FTIR analysis showed a wide variety of compounds which may contribute to the observed effects. Keywords: Convolvulus pluricaulis, GC-MS, FTIR, Antioxidant, SH-SY5Y, Neuroprotectio
    corecore