35 research outputs found
Artificial Neural Network Based Machining Operation Selection for Prismatic Components
Computer-aided process planning systems are used to assist human planners in producing better process plans. New artificial intelligence techniques play a significant role in CAPP. CAPP research includes neural network approaches, knowledge-based techniques, Petri nets, agent-based, fuzzy set theory, genetic algorithm, Standard for the Exchange of Product model data (STEP)-Compliant CAPP, and Internet-based techniques. This study deals with the application of the Artificial Neural Network techniques (ANN) in CAPP because of their learning ability and massive potential toward dynamic planning. This study focuses on the usage of artificial neural networks machining operation selection and sequences of operations for prismatic components. The intelligent CAPP system suggests the best machining operation and its sequences for the prismatic components using tolerances, material requirements, and surface finish details. The process planning of machining features in part is the starting point. An enormous amount of knowledge is required for part feature process planning, like selecting proper material, size, stock, dimensional tolerance, and surface finish. In this work, various prismatic features, such as a hole, slot, pocket, boss, chamfer, fillet, and face are taken and details like material, size, stock, dimensional tolerance and surface finish are properly normalized and given as input to neural networks to find the required sequence of machining operation. LevenbergMarquidt algorithm was used to train the networks and was found very effective in operation sequence selection. A sample prismatic component with nine features have been analyzed and found to be more productive. Levenberg Marquidt algorithm is then compared with the conjugant space algorithm, and it is found that the former produces less error in outputs compared to them later
Atom focusing by far-detuned and resonant standing wave fields: Thin lens regime
The focusing of atoms interacting with both far-detuned and resonant standing
wave fields in the thin lens regime is considered. The thin lens approximation
is discussed quantitatively from a quantum perspective. Exact quantum
expressions for the Fourier components of the density (that include all
spherical aberration) are used to study the focusing numerically. The following
lens parameters and density profiles are calculated as functions of the pulsed
field area : the position of the focal plane, peak atomic density,
atomic density pattern at the focus, focal spot size, depth of focus, and
background density. The lens parameters are compared to asymptotic, analytical
results derived from a scalar diffraction theory for which spherical aberration
is small but non-negligible (). Within the diffraction theory
analytical expressions show that the focused atoms in the far detuned case have
an approximately constant background density
while the peak density behaves as , the focal distance or
time as , the focal spot size as
, and the depth of focus as .
Focusing by the resonant standing wave field leads to a new effect, a Rabi-
like oscillation of the atom density. For the far-detuned lens, chromatic
aberration is studied with the exact Fourier results. Similarly, the
degradation of the focus that results from angular divergence in beams or
thermal velocity distributions in traps is studied quantitatively with the
exact Fourier method and understood analytically using the asymptotic results.
Overall, we show that strong thin lens focusing is possible with modest laser
powers and with currently achievable atomic beam characteristics.Comment: 21 pages, 11 figure
Nanofabrication by magnetic focusing of supersonic beams
We present a new method for nanoscale atom lithography. We propose the use of
a supersonic atomic beam, which provides an extremely high-brightness and cold
source of fast atoms. The atoms are to be focused onto a substrate using a thin
magnetic film, into which apertures with widths on the order of 100 nm have
been etched. Focused spot sizes near or below 10 nm, with focal lengths on the
order of 10 microns, are predicted. This scheme is applicable both to precision
patterning of surfaces with metastable atomic beams and to direct deposition of
material.Comment: 4 pages, 3 figure
Snowmass2021 theory frontier white paper: Astrophysical and cosmological probes of dark matter
While astrophysical and cosmological probes provide a remarkably precise and consistent picture of the quantity and general properties of dark matter, its fundamental nature remains one of the most significant open questions in physics. Obtaining a more comprehensive understanding of dark matter within the next decade will require overcoming a number of theoretical challenges: the groundwork for these strides is being laid now, yet much remains to be done. Chief among the upcoming challenges is establishing the theoretical foundation needed to harness the full potential of new observables in the astrophysical and cosmological domains, spanning the early Universe to the inner portions of galaxies and the stars therein. Identifying the nature of dark matter will also entail repurposing and implementing a wide range of theoretical techniques from outside the typical toolkit of astrophysics, ranging from effective field theory to the dramatically evolving world of machine learning and artificial-intelligence-based statistical inference. Through this work, the theory frontier will be at the heart of dark matter discoveries in the upcoming decade
Gravitational wave probes of dark matter: challenges and opportunities
In this white paper, we discuss the prospects for characterizing and identifying dark matter using gravitational waves, covering a wide range of dark matter candidate types and signals. We argue that present and upcoming gravitational wave probes offer unprecedented opportunities for unraveling the nature of dark matter and we identify the most urgent challenges and open problems with the aim of encouraging a strong community effort at the interface between these two exciting fields of research
Gravitational wave probes of dark matter: challenges and opportunities
In this white paper, we discuss the prospects for characterizing and identifying dark matter using gravitational waves, covering a wide range of dark matter candidate types and signals. We argue that present and upcoming gravitational wave probes offer unprecedented opportunities for unraveling the nature of dark matter and we identify the most urgent challenges and open problems with the aim of encouraging a strong community effort at the interface between these two exciting fields of research