2,910 research outputs found
A Formal Framework for Speedup Learning from Problems and Solutions
Speedup learning seeks to improve the computational efficiency of problem
solving with experience. In this paper, we develop a formal framework for
learning efficient problem solving from random problems and their solutions. We
apply this framework to two different representations of learned knowledge,
namely control rules and macro-operators, and prove theorems that identify
sufficient conditions for learning in each representation. Our proofs are
constructive in that they are accompanied with learning algorithms. Our
framework captures both empirical and explanation-based speedup learning in a
unified fashion. We illustrate our framework with implementations in two
domains: symbolic integration and Eight Puzzle. This work integrates many
strands of experimental and theoretical work in machine learning, including
empirical learning of control rules, macro-operator learning, Explanation-Based
Learning (EBL), and Probably Approximately Correct (PAC) Learning.Comment: See http://www.jair.org/ for any accompanying file
Petrology and physical conditions of metamorphism of calcsilicate rocks from low- to high-grade transition area, Dharmapuri District, Tamil Nadu
Calc-silicate rocks comprising quartz, plagioclase, diopside, sphene, scapolite, grossularite-andradite and wollastonite occur as lensoid enclaves within the greasy migmatitic and charnockitic gneisses of the Archaean amphibolite- to granulite-facies transition zone in Dharmapuri district, Tamil Nadu. The calc-silicate rocks are characterized by the absence of K-feldspar and primary calcite, presence of large modal quartz and plagioclase and formation of secondary garnet and zoisite rims around scapolite and wollastonite. The mineral distributions suggest compositional layering. The chemical composition and mineralogy of the calc-silicate rocks indicate that they were derived from impure silica-rich calcareous sediments whose composition is similar to that of pelite-limestone mixtures. From the mineral assemblages the temperature, pressure and fluid composition during metamorphism were estimated. The observed mineral reaction sequences require a range of X sub CO2 values demonstrating that an initially CO2-rich metamorphic fluid evolved with time towards considerably more H2O-rich compositions. These variations in fluid composition suggest that there were sources of water-rich fluids external to the calc-silicate rocks and that mixing of these fluids with those of calc-silicate rocks was important in controlling fluid composition in calc-silicate rocks and some adjacent rock types as well
Major Galaxy Mergers and the Growth of Supermassive Black Holes in Quasars
Despite observed strong correlations between central supermassive black holes
(SMBHs) and star-formation in galactic nuclei, uncertainties exist in our
understanding of their coupling. We present observations of the ratio of
heavily-obscured to unobscured quasars as a function of cosmic epoch up to z~3,
and show that a simple physical model describing mergers of massive, gas-rich
galaxies matches these observations. In the context of this model, every
obscured and unobscured quasar represent two distinct phases that result from a
massive galaxy merger event. Much of the mass growth of the SMBH occurs during
the heavily-obscured phase. These observations provide additional evidence for
a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH
and coeval star formation.Comment: Accepted for publication in Science. Published by Science Express on
March 25th. 17 pages, 5 figures, including supplemental online materia
X-ray photoelectron spectroscopic investigation of phenosafranine adsorbed onto micro and mesoporous materials
The phenosafranine adsorbed onto the micro and mesoporous materials prepared by ion exchange method and interaction of the dye with host materials were studied by X-ray photoelectron spectroscopy to elucidate the influence of the host matrix on the binding energy of N 1s orbital. Core level N 1s X-ray photoelectron spectroscopy reveals the interaction between the dye and the solid surface through the hydrogen bonding between the hydrogen atoms of primary amino groups in dye molecule and the oxygen atom of surface hydroxyl groups. The strength of the hydrogen bonding depends on the nature of the solid surface. In the dye adsorbed onto the micro and mesoporous materials the interaction between adsorbed phenosafranine and the surfaces of the porous materials are found to modify the optical spectra and the excited state dynamics of the confined phenosafranine molecules. The change in photophysical properties of phenosafranine adsorbed on to the host materials on dehydration at elevated temperatures is attributed to the modification of host surface during dehydration process
Cosmological Implications of the Very High Redshift GRB 050904
We report near simultaneous multi-color (RIYJHK) observations made with the
MAGNUM 2m telescope of the gamma ray burst GRB 050904 detected by the SWIFT
satellite. The spectral energy distribution shows a very large break between
the I and J bands. Using intergalactic transmissions measured from high
redshift quasars we show that the observations place a 95% confidence lower
limit of z=6.18 on the object, consistent with a later measured spectroscopic
redshift of 6.29 obtained by Kawai et al. (2005) with the Subaru telescope. We
show that the break strength in the R and I bands is consistent with that
measured in the quasars. Finally we consider the implications for the star
formation history at high redshift.Comment: Accepted for publication in the Astrophysical Journal. Expanded
introduction and discussio
- …