2 research outputs found

    A Diet with Amikacin Changes the Bacteriobiome and the Physiological State of <i>Galleria mellonella</i> and Causes Its Resistance to <i>Bacillus thuringiensis</i>

    No full text
    Environmental pollution with antibiotics can cause antibiotic resistance in microorganisms, including the intestinal microbiota of various insects. The effects of low-dose aminoglycoside antibiotic (amikacin) on the resident gut microbiota of Galleria mellonella, its digestion, its physiological parameters, and the resistance of this species to bacteria Bacillus thuringiensis were investigated. Here, 16S rDNA analysis revealed that the number of non-dominant Enterococcus mundtii bacteria in the eighteenth generation of the wax moth treated with amikacin was increased 73 fold compared to E. faecalis, the dominant bacteria in the native line of the wax moth. These changes were accompanied by increased activity of acidic protease and glutathione-S-transferase in the midgut tissues of larvae. Ultra-thin section electron microscopy detected no changes in the structure of the midgut tissues. In addition, reduced pupa weight and resistance of larvae to B. thuringiensis were observed in the eighteenth generation of the wax moth reared on a diet with amikacin. We suggest that long-term cultivation of wax moth larvae on an artificial diet with an antibiotic leads to its adaptation due to changes in both the gut microbiota community and the physiological state of the insect organism

    Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis

    No full text
    BACKGROUND We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5x) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5x) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4x) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4x) after 24 h and increased (1.1-1.5x) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt
    corecore