694 research outputs found

    The Effects of a High Fat Meal on Blood Flow Regulation during Arm Exercise

    Get PDF
    A diet high in saturated fats results in endothelial dysfunction and can lead to atherosclerosis, a precursor to cardiovascular disease. Exercise training is a potent stimulus though to mitigate the negative effects of a high saturated fat diet; however, it is unclear how high-saturated fat meal (HSFM) consumption impacts blood flow regulation during a single exercise session. PURPOSE: This study sought to examine the impact of a single HSFM on peripheral vascular function during an acute upper limb exercise bout. METHODS: Ten young healthy individuals completed two sessions of progressive handgrip exercise. Subjects either consumed a HSFM (0.84 g of fat/kg of body weight) 4 hours prior or remained fasted before the exercise bout. Progressive rhythmic handgrip exercise (6kg, 12kg, 18kg) was performed for 3 minutes per stage at rate of 1 Hz. The brachial artery (BA) diameter and blood velocity was obtained using Doppler Ultrasound (GE Logiq e) and BA blood flow was calculated with these values. RESULTS: BA blood flow and flow mediated dilation (normalized for shear rate) during the handgrip exercise significant increased from baseline in all workloads, but no differences were revealed in response to the HSFM consumption. CONCLUSION: Progressive handgrip exercise augmented BA blood flow and flow mediated dilation in both testing days; however, there was no significant differences following the HSFM consumption. This suggests that upper limb blood flow regulation during exercise is unaltered by a high fat meal in young healthy individuals.https://scholarscompass.vcu.edu/gradposters/1060/thumbnail.jp

    Clinical considerations in early-onset cerebral amyloid angiopathy

    Get PDF
    Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-beta CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognised and may result from genetic or iatrogenic causes that warrant specific and focussed investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-beta CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-beta CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognised iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease

    Assessing Long-Distance Atmospheric Transport of Soilborne Plant Pathogens

    Full text link
    Pathogenic fungi are a leading cause of crop disease and primarily spread through microscopic, durable spores adapted differentially for both persistence and dispersal. Computational Earth System Models and air pollution models have been used to simulate atmospheric spore transport for aerial-dispersal-adapted (airborne) rust diseases, but the importance of atmospheric spore transport for soil-dispersal-adapted (soilborne) diseases remains unknown. This study adapts the Community Atmosphere Model, the atmospheric component of the Community Earth System Model, to simulate the global transport of the plant pathogenic soilborne fungus Fusarium oxysporum, F. oxy. Our sensitivity study assesses the model's accuracy in long-distance aerosol transport and the impact of deposition rate on long-distance spore transport in Summer 2020 during a major dust transport event from Northern Sub-Saharan Africa to the Caribbean and southeastern U.S. We find that decreasing wet and dry deposition rates by an order of magnitude improves representation of long distance, trans-Atlantic dust transport. Simulations also suggest that a small number of viable spores can survive trans-Atlantic transport to be deposited in agricultural zones. This number is dependent on source spore parameterization, which we improved through a literature search to yield a global map of F. oxy spore distribution in source agricultural soils. Using this map and aerosol transport modeling, we show how viable spore numbers in the atmosphere decrease with distance traveled and offer a novel danger index for viable spore deposition in agricultural zones

    A comparative analysis of the goal orientation and test anxiety of high school students with and without private tutors

    Get PDF
    The purpose of the study was to find out whether the goal orientation and test anxiety of high school students engaged in shadow education will be different from those whose only source of learning is that of mainstream education. A total of 387 high school students participated in this comparative research. They completed the Patterns of Adaptive Learning Scales and the Test Anxiety Inventory and results show that high school students without exposure to shadow education are more mastery-oriented while those with those with private tutors are more performance-oriented. In terms of test anxiety, it appears that those engaged in shadow education are more anxious about the testing process as compared to those without private tutors. Specifically, significant differences between the two groups were observed in their mastery orientation, level of emotionality and total test anxiety

    Improved Functional Outcome After Peripheral Nerve Stimulation of the Impaired Forelimb Post-stroke

    Get PDF
    Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions. There is no effective treatment to improve lost function except restoring blood flow within the first several hours. Rehabilitation strategies are widely used with limited success. The purpose of this study was to examine the effect of electrical stimulation on the impaired upper extremity to improve functional recovery after stroke. We developed a rodent model using an electrode cuff implant onto a single peripheral nerve (median nerve) of the paretic forelimb and applied daily electrical stimulation. The skilled forelimb reaching test was used to evaluate functional outcome after stroke and electrical stimulation. Anterograde axonal tracing from layer V pyramidal neurons with biotinylated dextran amine was done to evaluate the formation of new neuronal connections from the contralesional cortex to the deafferented spinal cord. Rats receiving electrical stimulation on the median nerve showed significant improvement in the skilled forelimb reaching test in comparison with stroke only and stroke with sham stimulation. Rats that received electrical stimulation also exhibited significant improvement in the latency to initiate adhesive removal from the impaired forelimb, indicating better sensory recovery. Furthermore, axonal tracing analysis showed a significant higher midline fiber crossing index in the cervical spinal cord of rats receiving electrical stimulation. Our results indicate that direct peripheral nerve stimulation leads to improved sensorimotor recovery in the stroke-impaired forelimb, and may be a useful approach to improve post-stroke deficits in human patients

    Presymptomatic cortical thinning in familial Alzheimer disease: A longitudinal MRI study.

    Get PDF
    OBJECTIVE: To identify a cortical signature pattern of cortical thinning in familial Alzheimer disease (FAD) and assess its utility in detecting and tracking presymptomatic neurodegeneration. METHODS: We recruited 43 FAD mutation carriers-36 PSEN1, 7 APP (20 symptomatic, 23 presymptomatic)-and 42 healthy controls to a longitudinal clinical and MRI study. T1-weighted MRI scans were acquired at baseline in all participants; 55 individuals (33 mutation carriers; 22 controls) had multiple (mean 2.9) follow-up scans approximately annually. Cortical thickness was measured using FreeSurfer. A cortical thinning signature was identified from symptomatic FAD participants. We then examined cortical thickness changes in this signature region in presymptomatic carriers and assessed associations with cognitive performance. RESULTS: The cortical signature included 6 regions: entorhinal cortex, inferior parietal cortex, precuneus, superior parietal cortex, superior frontal cortex, and supramarginal gyrus. There were significant differences in mean cortical signature thickness between mutation carriers and controls 3 years before predicted symptom onset. The earliest significant difference in a single region, detectable 4 years preonset, was in the precuneus. Rate of change in cortical thickness became significantly different in the cortical signature at 5 years before predicted onset, and in the precuneus at 8 years preonset. Baseline mean signature thickness predicted rate of subsequent thinning and correlated with presymptomatic cognitive change. CONCLUSIONS: The FAD cortical signature appears to be similar to that described for sporadic AD. All component regions showed significant presymptomatic thinning. A composite signature may provide more robust results than a single region and have utility as an outcome measure in presymptomatic trials

    Aβ profiles generated by Alzheimer's disease causing PSEN1 variants determine the pathogenicity of the mutation and predict age at disease onset.

    Get PDF
    Familial Alzheimer’s disease (FAD), caused by mutations in Presenilin (PSEN1/2) and Amyloid Precursor Protein (APP) genes, is associated with an early age at onset (AAO) of symptoms. AAO is relatively consistent within families and between carriers of the same mutations, but differs markedly between individuals carrying different mutations. Gaining a mechanistic understanding of why certain mutations manifest several decades earlier than others is extremely important in elucidating the foundations of pathogenesis and AAO. Pathogenic mutations affect the protease (PSEN/γ-secretase) and the substrate (APP) that generate amyloid β (Aβ) peptides. Altered Aβ metabolism has long been associated with AD pathogenesis, with absolute or relative increases in Aβ42 levels most commonly implicated in the disease development. However, analyses addressing the relationships between these Aβ42 increments and AAO are inconsistent. Here, we investigated this central aspect of AD pathophysiology via comprehensive analysis of 25 FAD-linked Aβ profiles. Hypothesis- and data-driven approaches demonstrate linear correlations between mutation-driven alterations in Aβ profiles and AAO. In addition, our studies show that the Aβ (37 + 38 + 40) / (42 + 43) ratio offers predictive value in the assessment of ‘unclear’ PSEN1 variants. Of note, the analysis of PSEN1 variants presenting additionally with spastic paraparesis, indicates that a different mechanism underlies the aetiology of this distinct clinical phenotype. This study thus delivers valuable assays for fundamental, clinical and genetic research as well as supports therapeutic interventions aimed at shifting Aβ profiles towards shorter Aβ peptides

    Variability in the type and layer distribution of cortical Aβ pathology in familial Alzheimer's disease.

    Get PDF
    Familial Alzheimer's disease (FAD) is caused by autosomal dominant mutations in the PSEN1, PSEN2 or APP genes, giving rise to considerable clinical and pathological heterogeneity in FAD. Here we investigate variability in clinical data and the type and distribution of Aβ pathologies throughout the cortical layers of different FAD mutation cases. Brain tissue from 20 FAD cases [PSEN1 pre-codon 200 (n = 10), PSEN1 post-codon 200 (n = 6), APP (n = 4)] were investigated. Frontal cortex sections were stained immunohistochemically for Aβ, and Nissl to define the cortical layers. The frequency of different amyloid-beta plaque types was graded for each cortical layer and the severity of cerebral amyloid angiopathy (CAA) was determined in cortical and leptomeningeal blood vessels. Comparisons were made between FAD mutations and APOE4 status, with associations between pathology, clinical and genetic data investigated. In this cohort, possession of an APOE4 allele was associated with increased disease duration but not with age at onset, after adjusting for mutation sub-group and sex. We found Aβ pathology to be heterogeneous between cases although Aβ load was highest in cortical layer 3 for all mutation groups and a higher Aβ load was associated with APOE4. The PSEN1 post-codon 200 group had a higher Aβ load in lower cortical layers, with a small number of this group having increased cotton wool plaque pathology in lower layers. Cotton wool plaque frequency was positively associated with the severity of CAA in the whole cohort and in the PSEN1 post-codon 200 group. Carriers of the same PSEN1 mutation can have differing patterns of Aβ deposition, potentially because of differences in risk factors. Our results highlight possible influences of APOE4 genotype, and PSEN1 mutation type on Aβ deposition, which may have effects on the clinical heterogeneity of FAD
    • …
    corecore