9 research outputs found

    Light Ion Yields from Bombardment of Thick Targets by Protons, Helium-4 and Iron-56

    No full text
    In March 2016 accelerator-based experiments colliding protons (0.4 and 0.8 GeV), helium (0.4 AGeV) and iron (0.4 and 0.8 AGeV) on thick aluminum targets with surface densities of 20, 40, and 60 g/cm2 were performed at the National Aeronautics and Space Administration Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory. Two targets were utilized in each experimental configuration. Hydrogen and helium ions were detected using organic liquid scintillators in conjunction with thin plastic scintillators at 10°, 30°, 45°, 60°, 80°, and 135° from beam axis. Time-of-flight techniques and pulse shape discrimination were used to identify light ion species in order to generate double differential energy spectra of the light ion fragments. Comparisons of these measured yields were compared with Monte Carlo calculations generated by MCNP6. These yields will be used to quantify uncertainty in radiation transport codes utilized in risk assessment for spaceflight missions with prolonged exposures to galactic cosmic rays

    Secondary light-ion transport from intermediate-energy hadron experiments

    No full text
    The aim of this research is to produce double differential thick target yields, angular distributions and integrated yields for the inclusive production of neutrons, protons, deuterons, tritons, 3He, and 4He from intermediate heavy-ion interactions on thick targets of aluminium, polyethylene and other targets of interest to the radiation shielding program as specified by the National Aeronautics and Space Administration (NASA). In tandem with the experimental research, transport model calculations of these thick target yields were also performed. The first such experimental run was conducted in May 2015, with the expectation of improved experimental results at a following March 2016 run at the NASA Space Radiation Laboratory (NSRL) on the campus of Brookhaven National Laboratory (BNL). The May 2015 commissioning run served to test the electronics of the experimental setup, as well as the various detectors and other equipment under the conditions in which the following measurements will be run. The series of future accelerator-based experiments will rely on the inclusion of two separate upstream and downstream targets. Analysis of the data from both sets of detectors – liquid scintillator and sodium iodide – using both pulse height and time-of-flight methods will allow NASA to perform uncertainty quantification and sensitivity analysis on their transport codes and future shielding studies

    Light Ion Yields from Bombardment of Thick Targets by Protons, Helium-4 and Iron-56

    No full text
    In March 2016 accelerator-based experiments colliding protons (0.4 and 0.8 GeV), helium (0.4 AGeV) and iron (0.4 and 0.8 AGeV) on thick aluminum targets with surface densities of 20, 40, and 60 g/cm2 were performed at the National Aeronautics and Space Administration Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory. Two targets were utilized in each experimental configuration. Hydrogen and helium ions were detected using organic liquid scintillators in conjunction with thin plastic scintillators at 10°, 30°, 45°, 60°, 80°, and 135° from beam axis. Time-of-flight techniques and pulse shape discrimination were used to identify light ion species in order to generate double differential energy spectra of the light ion fragments. Comparisons of these measured yields were compared with Monte Carlo calculations generated by MCNP6. These yields will be used to quantify uncertainty in radiation transport codes utilized in risk assessment for spaceflight missions with prolonged exposures to galactic cosmic rays

    Double differential neutron yields from thick targets used in space applications

    No full text
    In March 2016, secondary neutron production from thick-target shielding experiments were conducted at the National Aeronautics and Space Administration’s (NASA) Space Radiation Laboratory at Brookhaven National Laboratory. Ion beams of proton, helium, and iron projectiles were aimed at aluminum targets with areal densities of 20, 40, and 60 g/cm2. The ion beams were extracted at energies of 400 and 800 AMeV and neutron yields were measured with liquid scintillators at 10°, 30°, 45°, 60°, 80°, and 135° off the beam axis. A second 60 g/cm2 aluminum target was placed 3.5 m downstream from the middle of front target to study backscattered neutrons. Double differential thick-target neutron yields for various combinations of projectile, projectile energy, target material, target thickness, and detector location were produced using the time-of-flight technique. These measurements will help NASA perform uncertainty analyses on their transport codes and contribute to shielding design studies for future space applications

    Double differential neutron yields from thick targets used in space applications

    No full text
    In March 2016, secondary neutron production from thick-target shielding experiments were conducted at the National Aeronautics and Space Administration’s (NASA) Space Radiation Laboratory at Brookhaven National Laboratory. Ion beams of proton, helium, and iron projectiles were aimed at aluminum targets with areal densities of 20, 40, and 60 g/cm2. The ion beams were extracted at energies of 400 and 800 AMeV and neutron yields were measured with liquid scintillators at 10°, 30°, 45°, 60°, 80°, and 135° off the beam axis. A second 60 g/cm2 aluminum target was placed 3.5 m downstream from the middle of front target to study backscattered neutrons. Double differential thick-target neutron yields for various combinations of projectile, projectile energy, target material, target thickness, and detector location were produced using the time-of-flight technique. These measurements will help NASA perform uncertainty analyses on their transport codes and contribute to shielding design studies for future space applications

    Secondary light-ion transport from intermediate-energy hadron experiments

    No full text
    The aim of this research is to produce double differential thick target yields, angular distributions and integrated yields for the inclusive production of neutrons, protons, deuterons, tritons, 3He, and 4He from intermediate heavy-ion interactions on thick targets of aluminium, polyethylene and other targets of interest to the radiation shielding program as specified by the National Aeronautics and Space Administration (NASA). In tandem with the experimental research, transport model calculations of these thick target yields were also performed. The first such experimental run was conducted in May 2015, with the expectation of improved experimental results at a following March 2016 run at the NASA Space Radiation Laboratory (NSRL) on the campus of Brookhaven National Laboratory (BNL). The May 2015 commissioning run served to test the electronics of the experimental setup, as well as the various detectors and other equipment under the conditions in which the following measurements will be run. The series of future accelerator-based experiments will rely on the inclusion of two separate upstream and downstream targets. Analysis of the data from both sets of detectors – liquid scintillator and sodium iodide – using both pulse height and time-of-flight methods will allow NASA to perform uncertainty quantification and sensitivity analysis on their transport codes and future shielding studies
    corecore