14 research outputs found

    Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(O)F(1)-ATP synthase each.

    Get PDF
    ATP synthase is a unique rotary machine that uses the transmembrane electrochemical potential difference of proton (Delta(H(+))) to synthesize ATP from ADP and inorganic phosphate. Charge translocation by the enzyme can be most conveniently followed in chromatophores of phototrophic bacteria (vesicles derived from invaginations of the cytoplasmic membrane). Excitation of chromatophores by a short flash of light generates a step of the proton-motive force, and the charge transfer, which is coupled to ATP synthesis, can be spectrophotometrically monitored by electrochromic absorption transients of intrinsic carotenoids in the coupling membrane. We assessed the average number of functional enzyme molecules per chromatophore vesicle. Kinetic analysis of the electrochromic transients plus/minus specific ATP synthase inhibitors (efrapeptin and venturicidin) showed that the extent of the enzyme-related proton transfer dropped as a function of the inhibitor concentration, whereas the time constant of the proton transfer changed only marginally. Statistical analysis of the kinetic data revealed that the average number of proton-conducting F(O)F(1)-molecules per chromatophore was approximately one. Thereby chromatophores of Rhodobacter capsulatus provide a system where the coupling of proton transfer to ATP synthesis can be studied in a single enzyme/single vesicle mode

    MitoCLox: A Novel Mitochondria-Targeted Fluorescent Probe for Tracing Lipid Peroxidation

    No full text
    Peroxidation of cardiolipin (CL) in the inner mitochondrial membrane plays a key role in the development of various pathologies and, probably, aging. The four fatty acid tails of CL are usually polyunsaturated, which makes CL particularly sensitive to peroxidation. Peroxidation of CL is involved in the initiation of apoptosis, as well as in some other important cellular signaling chains. However, the studies of CL peroxidation are strongly limited by the lack of methods for its tracing in living cells. We have synthesized a new mitochondria-targeted fluorescent probe sensitive to lipid peroxidation (dubbed MitoCLox), where the BODIPY fluorophore, carrying a diene-containing moiety (as in the C11-BODIPY (581/591) probe), is conjugated with a triphenylphosphonium cation (TPP+) via a long flexible linker that contains two amide bonds. The oxidation of MitoCLox could be measured either as a decrease of absorbance at 588 nm or as an increase of fluorescence in the ratiometric mode at 520/590 nm (emission). In CL-containing liposomes, MitoCLox oxidation was induced by cytochrome c and developed in parallel with cardiolipin oxidation. TPP+-based mitochondria-targeted antioxidant SkQ1, in its reduced form, inhibited oxidation of MitoCLox concurrently with the peroxidation of cardiolipin. Molecular dynamic simulations of MitoCLox in a cardiolipin-containing membrane showed affinity of positively charged MitoCLox to negatively charged CL molecules; the oxidizable diene moiety of MitoCLox resided on the same depth as the cardiolipin lipid peroxides. We suggest that MitoCLox could be used for monitoring CL oxidation in vivo and, owing to its flexible linker, also serve as a platform for producing peroxidation sensors with affinity to particular lipids

    Impact of antioxidants on cardiolipin oxidation in liposomes: Why mitochondrial cardiolipin serves as an apoptotic signal

    No full text
    Molecules of mitochondrial cardiolipin (CL) get selectively oxidized upon oxidative stress, which triggers the intrinsic apoptotic pathway. In a chemical model most closely resembling the mitochondrial membrane—liposomes of pure bovine heart CL—we compared ubiquinol-10, ubiquinol-6, and alpha-tocopherol, the most widespread naturally occurring antioxidants, with man-made, quinol-based amphiphilic antioxidants. Lipid peroxidation was induced by addition of an azo initiator in the absence and presence of diverse antioxidants, respectively. The kinetics of CL oxidation was monitored via formation of conjugated dienes at 234 nm. We found that natural ubiquinols and ubiquinol-based amphiphilic antioxidants were equally efficient in protecting CL liposomes from peroxidation; the chromanol-based antioxidants, including alpha-tocopherol, were 2-3 times less efficient. Amphiphilic antioxidants, but not natural ubiquinols and alpha-tocopherol, were able, additionally, to protect the CL bilayer from oxidation by acting from the water phase. We suggest that the previously reported therapeutic efficiency of mitochondrially targeted amphiphilic antioxidants is owing to their ability to protect those CL molecules that are inaccessible to natural hydrophobic antioxidants, being trapped within respiratory supercomplexes. The high susceptibility of such occluded CL molecules to oxidation may have prompted their recruitment as apoptotic signaling molecules by nature

    A Three-Dimensional Model of the Yeast Transmembrane Sensor Wsc1 Obtained by SMA-Based Detergent-Free Purification and Transmission Electron Microscopy

    No full text
    The cell wall sensor Wsc1 belongs to a small family of transmembrane proteins, which are crucial to sustain cell integrity in yeast and other fungi. Wsc1 acts as a mechanosensor of the cell wall integrity (CWI) signal transduction pathway which responds to external stresses. Here we report on the purification of Wsc1 by its trapping in water-soluble polymer-stabilized lipid nanoparticles, obtained with an amphipathic styrene-maleic acid (SMA) copolymer. The latter was employed to transfer tagged sensors from their native yeast membranes into SMA/lipid particles (SMALPs), which allows their purification in a functional state, i.e., avoiding denaturation. The SMALPs composition was characterized by fluorescence correlation spectroscopy, followed by two-dimensional image acquisition from single particle transmission electron microscopy to build a three-dimensional model of the sensor. The latter confirms that Wsc1 consists of a large extracellular domain connected to a smaller intracellular part by a single transmembrane domain, which is embedded within the hydrophobic moiety of the lipid bilayer. The successful extraction of a sensor from the yeast plasma membrane by a detergent-free procedure into a native-like membrane environment provides new prospects for in vitro structural and functional studies of yeast plasma proteins which are likely to be applicable to other fungi, including plant and human pathogens

    Lipid Dynamics in Diisobutylene-Maleic Acid (DIBMA) Lipid Particles in Presence of Sensory Rhodopsin II

    No full text
    Amphiphilic diisobutylene/maleic acid (DIBMA) copolymers extract lipid-encased membrane proteins from lipid bilayers in a detergent-free manner, yielding nanosized, discoidal DIBMA lipid particles (DIBMALPs). Depending on the DIBMA/lipid ratio, the size of DIBMALPs can be broadly varied which makes them suitable for the incorporation of proteins of different sizes. Here, we examine the influence of the DIBMALP sizes and the presence of protein on the dynamics of encased lipids. As shown by a set of biophysical methods, the stability of DIBMALPs remains unaffected at different DIBMA/lipid ratios. Coarse-grained molecular dynamics simulations confirm the formation of viable DIBMALPs with an overall size of up to 35 nm. Electron paramagnetic resonance spectroscopy of nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels reveals that the dynamics of enclosed lipids are not altered by the DIBMALP size. The presence of the membrane protein sensory rhodopsin II from Natronomonas pharaonis (NpSRII) results in a slight increase in the lipid dynamics compared to empty DIBMALPs. The light-induced photocycle shows full functionality of DIBMALPs-embedded NpSRII and a significant effect of the protein-to-lipid ratio during preparation on the NpSRII dynamics. This study indicates a possible expansion of the applicability of the DIBMALP technology on studies of membrane protein–protein interaction and oligomerization in a constraining environment

    Mechanisms of Formation, Structure, and Dynamics of Lipoprotein Discs Stabilized by Amphiphilic Copolymers: A Comprehensive Review

    No full text
    Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene–maleic acid (SMA), diisobutylene–maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency
    corecore