29 research outputs found

    THz parametric gain in semiconductor superlattices in the absence of electric domains

    Full text link
    We theoretically show that conditions for THz gain and conditions for formation of destructive electric domains in semiconductor superlattices are fairly different in the case of parametric generation and amplification. Action of an unbiased high-frequency electric field on a superlattice causes a periodic variation of energy and effective mass of miniband electrons. This parametric effect can result in a significant gain at some even harmonic of the pump frequency without formation of electric domains and corruption from pump harmonics.Comment: 4 pages, 3 figures. Accepted to Appl. Phys. Let

    Terahertz Bloch oscillator with a modulated bias

    Get PDF
    Electrons performing Bloch oscillations in an energy band of a dc-biased superlattice in the presence of weak dissipation can potentially generate THz fields at room temperature. The realization of such Bloch oscillator is a long-standing problem due to the instability of a homogeneous electric field in conditions of negative differential conductivity. We establish the theoretical feasibility of stable THz gain in a long superlattice device in which the bias is quasistatically modulated by microwave fields. The modulation waveforms must have at least two harmonics in their spectra.Comment: 5 page

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens

    No full text
    A slightly yellowish, Gram-positive, filamentous with 'cross-like' branching, aerobic, spore-forming bacterium was isolated from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The bacterium studied was chemoorganotrophic, tolerant to 3% NaCl, alkalitolerant, and alginolytic. The predominant cellular fatty acid was ai15:0 which accounted more than 65% of total fatty acids, while i14:0, il5:0 i16:0, and ai17:0 made up 25%. DNA base composition was 37 mol% GC. Phylogenetic analysis of 16S rDNA gene revealed that this isolate was a member of the genus Bacillus, with no close relatives at the species level (16S rRNA gene sequence similarity less 97%). On the basis of the significant differences demonstrated in the phenotypic and chemotaxonomic characteristics, it is suggested that the bacterium be classified as a novel species; the name Bacillus algicola sp. nov. is proposed. The type strain is KMM 3737T (= CIP 107850T)

    Brevibacterium celere sp. nov. isolated from degraded thallus of a brown alga

    No full text
    Two whitish yellow, Gram-positive, non-motile, aerobic bacteria were isolated from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The bacteria studied were chemo-organotrophic, mesophilic and grew well on nutrient media containing up to 15 % (w/v) NaCl. The DNA G+C content was 61 mol%. The two isolates exhibited a conspecific DNA–DNA relatedness value of 98 %, indicating that they belong to the same species. A comparative analysis of 16S rRNA gene sequences revealed that strain KMM 3637T formed a distinct phyletic lineage in the genus Brevibacterium (family Brevibacteriaceae, class Actinobacteria) and showed the highest sequence similarity (about 97 %) to Brevibacterium casei. DNA–DNA hybridization experiments demonstrated 45 % binding with the DNA of B. casei DSM 20657T. Physiological and chemotaxonomic characteristics (meso-diaminopimelic acid in the peptidoglycan, major cellular fatty acids 15 : 0ai and 17 : 0ai) of the bacteria studied were consistent with the genomic and phylogenetic data. On the basis of the results of this study, a novel species, Brevibacterium celere sp. nov., is proposed. The type strain is KMM 3637T (=DSM 15453T=ATCC BAA-809T)

    Formosa algae gen. nov., a novel member of the family Flavobacteriaceae

    No full text
    Four light-yellow-pigmented, Gram-negative, short-rod-shaped, non-motile isolates were obtained from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The isolates studied were chemo-organotrophic, alkalitolerant and mesophilic. Polar lipids were analysed and phosphatidylethanolamine was the only phospholipid identified. The predominant cellular fatty acids were 15 : 0, i15 : 0, ai15 : 0, i15 : 1 and 15 : 1(n-6). The DNA G+C contents of the four strains were 34·0–34·4 mol%. The level of DNA relatedness of the four isolates was conspecific (88–98 %), indicating that they belong to the same species. The 16S rDNA sequence of strain KMM 3553T was determined. Phylogenetic analysis revealed that KMM 3553T formed a distinct phyletic line in the phylum Bacteroidetes, class Flavobacteria in the family Flavobacteriaceae and that, phylogenetically, this strain could be placed almost equidistant from the genera Gelidibacter and Psychroserpens (16S rRNA gene sequence similarities of 94 %). On the basis of significant differences in phenotypic and chemotaxonomic characteristics, it is suggested that the isolates represent a novel species in a new genus; the name Formosa algae gen. nov., sp. nov. is proposed. The type strain is KMM 3553T (=CIP 107684T)
    corecore