5 research outputs found

    Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme

    Get PDF
    Abstract1,1-Diphosphonate analogs of pyrophosphate, containing an amino or a hydroxyl group on the bridge carbon atom, are potent inhibitors of the H+-translocating pyrophosphatases of chromatophores prepared from the bacterium Rhodospirillum rubrum and vacuolar membrane vesicles prepared from the plant Vigna radiata. The inhibition constant for aminomethylenediphosphonate, which binds competitively with respect to substrate, is below 2 μM. Rat liver mitochondrial pyrophosphatase is two orders of magnitude less sensitive to this compound but extremely sensitive to imidodiphosphate. By contrast, fluoride is highly effective only against the mitochondrial pyrophosphatase. It is concluded that the mitochondrial pyrophosphatase and the H+-pyrophosphatases of chromatophores and vacuolar membranes belong to two different classes of enzyme

    Levofloxacin and Amikacin Adsorption on Nanodiamonds: Mechanism and Application Prospects

    No full text
    This research is focused on the adsorption modification of detonation nanodiamond surfaces with antibiotics for their further use as smart materials for cardiovascular surgery purposes, namely as bioprostheses modifiers. Tritium-labeled amikacin and levofloxacin were used as tracers for the adsorption process control. We found that nanodiamonds form adsorption complexes with levofloxacin via physical adsorption, while in the case of amikacin, electrostatic attraction contributes to the formation of more stable complexes, even in the presence of electrolytes and desorbing agents (models of biological fluids). Antimicrobial characterization of nanodiamond–levofloxacin and nanodiamond–amikacin complexes indicates a reduction in the dose of antibiotics that is used as an antimicrobial agent. Therefore, the use of biomaterial based on DND complexes with antibiotics as the basis of bioprostheses will allow one either to avoid or significantly reduce the duration and intensity of antibiotics use in the postoperative period, which is critically important from the viewpoint of the development of antibiotic resistance in pathogens

    Levofloxacin and Amikacin Adsorption on Nanodiamonds: Mechanism and Application Prospects

    No full text
    This research is focused on the adsorption modification of detonation nanodiamond surfaces with antibiotics for their further use as smart materials for cardiovascular surgery purposes, namely as bioprostheses modifiers. Tritium-labeled amikacin and levofloxacin were used as tracers for the adsorption process control. We found that nanodiamonds form adsorption complexes with levofloxacin via physical adsorption, while in the case of amikacin, electrostatic attraction contributes to the formation of more stable complexes, even in the presence of electrolytes and desorbing agents (models of biological fluids). Antimicrobial characterization of nanodiamond–levofloxacin and nanodiamond–amikacin complexes indicates a reduction in the dose of antibiotics that is used as an antimicrobial agent. Therefore, the use of biomaterial based on DND complexes with antibiotics as the basis of bioprostheses will allow one either to avoid or significantly reduce the duration and intensity of antibiotics use in the postoperative period, which is critically important from the viewpoint of the development of antibiotic resistance in pathogens
    corecore