38 research outputs found

    University-business-government relations in the development of the institutional environment of Russian regions

    Get PDF
    Relevance. University-business-government relations drive regional innovation. Therefore, in order to stimulate innovation, a favourable institutional environment is necessary. Research objective. The article proposes an original methodology to examine regional institutional environment based on the analysis of the interactions between the government, business and universities.Methods and data. The study relies on the statistical data on 12 Russian regions for a 6-year period. The data are used to create three sets of indicators characterizing the institutional sectors 'Government', 'Business' and 'Universities'. Regions are divided into clusters and ranked according to the state of their institutional environments by calculating subindices and the integral index. Other research methods include cluster analysis and correlation regression analysis. Results. The regions were grouped according to their innovation performance: in lagging regions, the interactions between the government, business and universities are inefficient, which means that their regional institutional environment is not conducive to innovation. The opposite situation is observed in the group of leaders. We also found that interactions between the government, business and universities have a direct influence on GRP.Conclusion. For each group of regions, areas for improvement and the corresponding measures were identified. Interventions may vary in terms of intensity and government participation

    Brain Gangliosides and Their Function as Natural Adaptogenes

    Get PDF
    In brain gangliosides and phospholipids of stenothermal cold-water teleost fishes, higher content of polyenoic and monoenoic fatty acids was revealed than in brain gangliosides and phospholipids of warm-water stenothermal teleosts. The changes in fatty acid composition of lipids during adaptation of fishes to living in cold water (or at great water depth) are directed to the maintenance of liquid-crystalline state of cell membranes and their optimal fluidity, physical state, and microheterogeneity. The results of cluster analysis of the data on composition of carbohydrate component of brain gangliosides of various ectothermic vertebrates were used to create the dendrogram. This dendrogram was found to correspond appreciably to the tree of classical taxonomy of vertebrates. The changes in molecular organization of brain gangliosides in the course of evolution of vertebrates are suggested to contribute to differentiation of brain and complication of its functions in phylogenesis. The main brain gangliosides (GM1, GD1a, GD1b, GT1b) may be considered to be typical adaptogens. They protect neurons against the action of excitatory amino acids, hydrogen peroxide, amyloid β-peptide, and other toxins. Protective effect of gangliosides against these toxins depends on activation of Trk receptor tyrosine kinase and downstream protein kinases

    Development of the state support for agriculture in Krasnoyarsk region

    Get PDF
    The work reviews the status of state support for agriculture in Krasnoyarsk region on an example of dairy cattle breeding. The main shortcomings of the existing mechanism of state support for agricultural organizations are shown. The authors proposed a new definition of the state support for agriculture and derived comprehensive indicators of the assessment of the level of profitability of the resources used in agricultural production. On the basis of the developed economic and statistical model, the standards of dairy cattle breeding subsidies are defined in terms of levels of productivity and characteristics of reproduction.peer-reviewe

    Bandwidth-controlled Mott transition in κ(BEDTTTF)2Cu[N(CN)2]BrxCl1x\kappa-(BEDT-TTF)_2 Cu [N(CN)_2] Br_x Cl_{1-x} I. Optical studies of localized charge excitations

    Full text link
    Infrared reflection measurements of the half-filled two-dimensional organic conductors κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_{2}]Brx_{x}Cl1x_{1-x} were performed as a function of temperature (5K<T<3005 {\rm K}<T<300 K) and Br-substitution (x=0x=0%, 40%, 73%, 85%, and 90%) in order to study the metal-insulator transition. We can distinguish absorption processes due to itinerant and localized charge carriers. The broad mid-infrared absorption has two contributions: transitions between the two Hubbard bands and intradimer excitations from the charges localized on the (BEDT-TTF)2_2 dimer. Since the latter couple to intramolecular vibrations of BEDT-TTF, the analysis of both electronic and vibrational features provides a tool to disentangle these contributions and to follow their temperature and electronic-correlations dependence. Calculations based on the cluster model support our interpretation.Comment: 12 pages, 12 figure

    FIRST REPORT ON TRUFFLE-INHABITING FUNGI AND METAGENOMIC COMMUNITIES OF TUBER AESTIVUM COLLECTED IN RUSSIA

    Get PDF
    Truffles are one of the least studied groups of fungi in terms of their biological and biotechnological aspects. This study aimed to isolate truffle-inhabiting fungi and assess the metagenomic communities of the most common Russian summer truffle, Tuber aestivum. This study is the first to characterize the biodiversity of prokaryotic and eukaryotic organisms living in the truffle T. aestivum using molecular analysis and sequencing. Plant pathogens involved in a symbiotic relationship with truffles were identified by sequencing the hypervariable fragments of the 16S rRNA and 18S rRNA genes. In addition, some strains of fungal symbionts and likely pathogens were isolated and recognized for the first time from the truffles. This study also compared and characterized the general diversity and distribution of microbial taxa of T. aestivum collected in Russia and Europe. The results revealed that the Russian and European truffle study materials demonstrated high similarity. In addition to the truffles, representatives of bacteria, fungi, and protists were found in the fruiting bodies. Many of these prokaryotic and eukaryotic species inhabiting truffles might influence them, help them form mycorrhizae with trees, and regulate biological processes. Thus, truffles are interesting and promising sources for modern biotechnological and agricultural studies

    Overview of Decarbonization Technologies for Thermal and Electric Energy Production

    Get PDF
    В статье представлен обзор зарубежных и отечественных технологий декарбонизации тепловой и электрической энергии. За рубежом данные технологии развиваются более прогрессивно. Технологическим лидером по сокращению выбросов углекислого газа являются США. Наиболее перспективное решение в данном направлении – использование кислороднотопливных энергетических установок нового поколения, среди которых реализуется Allam Cycle, а также циклы SCOC–CC, E-MATIANT, NET Power cycle, Graz cycles, CES cycle. Существуют технологии ССUS, которые включают методики по улавливанию углекислого газа, его транспортировке на судне или по трубопроводу, использованию в качестве ресурса для создания ценных продуктов, а также захоронению глубоко под землей в геологических формациях. Из 27 реализуемых в мире проектов CCUS 78 % связаны с методами увеличения нефтеотдачи, а 67 % – проекты с прямым государственным участием или стимулированием. Перспективным направлением по снижению выбросов углекислого газа является использование топливных элементов. Компания Fuel Cell Energy (США) выступает практически монополистом по крупносерийному производству расплав-карбонатных топливных элементов. Их активные разработки идут в Японии, Южной Корее, США. На территории Российской Федерации технологии декарбонизации с полным выводом углекислого газа не реализованы. Политика декарбонизации осуществляется лишь с помощью внедрения процессов улавливания углекислого газа различными материалами. В статье представлена сводная таблица технологий декарбонизации, реализуемых как за рубежом, так и на территории России. Указаны основные преимущества технологий, их недостатки, реализация и пути финансированияThe article presents an overview of foreign and domestic technologies of decarbonization of thermal and electrical energy. These technologies are developing more progressively abroad. The technological leader in reducing carbon dioxide emissions is the United States. The most promising solution in this direction is the use of oxygen-fuel power plants of a new generation, among which Allam Cycle is implemented, as well as SCOC–CC, E-MATIANT, NET Power cycle, Graz cycles, CES cycle. There are SSUS technologies that include technologies for capturing carbon dioxide, transporting it by ship or pipeline, using it as a resource to create valuable products, as well as burial deep underground in geological formations. Of the 27 CCUS projects implemented in the world, 78 % are related to methods of increasing oil recovery, and 67 % are projects with direct state participation or incentives. A promising direction to reduce carbon dioxide emissions is the use of fuel cells. Fuel Cell Energy (USA) is practically a monopolist in the large-scale production of molten carbonate fuel cells. Their active developments are in Japan, South Korea, and the USA. Decarbonization technologies with complete removal of carbon dioxide have not been implemented on the territory of the Russian Federation. The decarbonization policy is carried out only through the introduction of carbon dioxide capture processes by various materials. The article presents a summary table of decarbonization technologies implemented both abroad and in Russia. The main advantages of technologies, their disadvantages, implementation and ways of financing are indicate

    Safety and immunogenicity of rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine against SARS-CoV-2 in healthy adolescents: an open-label, non-randomized, multicenter, phase 1/2, dose-escalation study

    Get PDF
    To protect young individuals against SARS-CoV-2 infection, we conducted an open-label, prospective, non-randomised dose-escalation Phase 1/2 clinical trial to evaluate the immunogenicity and safety of the prime-boost “Sputnik V” vaccine administered at 1/10 and 1/5 doses to adolescents aged 12–17 years. The study began with the vaccination of the older cohort (15-to-17-year-old participants) with the lower (1/10) dose of vaccine and then expanded to the whole group (12-to-17-year-old participants). Next, 1/5 dose was used according to the same scheme. Both doses were well tolerated by all age groups. No serious or severe adverse events were detected. Most of the solicited adverse reactions were mild. No significant differences in total frequencies of adverse events were registered between low and high doses in age-pooled groups (69.6% versus 66.7%). In contrast, the 1/5 dose induced significantly higher humoral and T cell-mediated immune responses than the 1/10 dose. The 1/5 vaccine dose elicited higher antigen-binding (both S and RBD-specific) as well as virus-neutralising antibody titres at the maximum of response (day 42), also resulting in a statistically significant difference at a distanced timepoint (day 180) compared to the 1/10 vaccine dose. Higher dose resulted in increased cross-neutralization of Delta and Omicron variants.;Clinical Trial RegistrationClinicalTrials.gov, NCT04954092, LP-007632

    Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study

    Get PDF
    Background Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. Methods This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. Results Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. Conclusions Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021)

    Magnetospheric access for solar protons during the January 2005 SEP event

    No full text
    The early phase of the extraordinary solar energetic particle 20 January, 2005 event having the highest peak flux of any SEP in the past 50 years of protons with energies > 100 MeV is studied. Solar energetic particles (>16 MeV) entry to the Earth’s magnetosphere on January 20, 2005 under northward interplanetary magnetic field conditions is considered based on multi-satellite data analysis and magnetic field simulation. Solar wind parameters and interplanetary magnetic field data, as well as calculations in terms of the A2000 magnetospheric magnetic field model were used to specify conditions in the Earth’s environment corresponding to solar proton event. It was shown that during the early phase of the event energetic particle penetration into the magnetosphere took place in the regions on the magnetopause where the magnetospheric and interplanetary magnetic field vectors are parallel. Complex analysis of the experimental data on particle fluxes in the interplanetary medium (data from ACE spacecraft) and on low-altitude (POES) and geosynchronous (GOES) orbits inside the Earth’s magnetosphere show two regions on the magnetopause responsible for particle access to the magnetosphere: the near equatorial day-side region and open field lines window at the high-latitude magnetospheric boundary. Calculations in terms of A2000 magnetospheric magnetic field model and comparison with SuperDARN images support the link between high-latitude solar energetic particle precipitations and the region at the magnetopause where the magnetospheric field is coupled with northward IMF, allowing solar particles entrance into the magnetosphere and access to the northern polar cap

    Magnetospheric access for solar protons during the January 2005 SEP event

    No full text
    The early phase of the extraordinary solar energetic particle 20 January, 2005 event having the highest peak flux of any SEP in the past 50 years of protons with energies > 100 MeV is studied. Solar energetic particles (>16 MeV) entry to the Earth’s magnetosphere on January 20, 2005 under northward interplanetary magnetic field conditions is considered based on multi-satellite data analysis and magnetic field simulation. Solar wind parameters and interplanetary magnetic field data, as well as calculations in terms of the A2000 magnetospheric magnetic field model were used to specify conditions in the Earth’s environment corresponding to solar proton event. It was shown that during the early phase of the event energetic particle penetration into the magnetosphere took place in the regions on the magnetopause where the magnetospheric and interplanetary magnetic field vectors are parallel. Complex analysis of the experimental data on particle fluxes in the interplanetary medium (data from ACE spacecraft) and on low-altitude (POES) and geosynchronous (GOES) orbits inside the Earth’s magnetosphere show two regions on the magnetopause responsible for particle access to the magnetosphere: the near equatorial day-side region and open field lines window at the high-latitude magnetospheric boundary. Calculations in terms of A2000 magnetospheric magnetic field model and comparison with SuperDARN images support the link between high-latitude solar energetic particle precipitations and the region at the magnetopause where the magnetospheric field is coupled with northward IMF, allowing solar particles entrance into the magnetosphere and access to the northern polar cap
    corecore