16 research outputs found

    Π‘ΠΎΡ€Π±Ρ†ΠΈΠΎΠ½Π½ΠΎ-структурныС свойства Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° основС Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ²

    Get PDF
    Π’ настоящСС врСмя для вывСдСния ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ количСства тяТСлых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΈ токсинов ΠΈΠ· ΠΆΠΈΠ²Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π² качСствС энтСро- ΠΈ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… сорбСнтов. НСисчСрпаСмой ΡΡ‹Ρ€ΡŒΠ΅Π²ΠΎΠΉ Π±Π°Π·ΠΎΠΉ для создания Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Π΅ Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Π°Π»ΡŒΠ³ΠΈΠ½Π°Ρ‚ ΠΈ Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π»ΠΈΠ³Π½ΠΈΠ½Π°. На ΠΈΡ… основС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ количСство сорбционных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ Ρ€Π°Π½Π΅Π²Ρ‹Ρ… ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ², Ρ‡Ρ‚ΠΎ связано Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ спСктром Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских свойств Π½Π°Π·Π²Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΈ ΠΈΡ… ΡƒΠΆΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΠΊΠΎ-биологичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, Π½ΠΎ ΠΈ с Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Π²ΠΎΠ·ΠΎΠ±Π½ΠΎΠ²Π»ΡΠ΅ΠΌΠΎΡΡ‚ΡŒΡŽ ΡΡ‹Ρ€ΡŒΠ΅Π²Ρ‹Ρ… источников для производства Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ², простотой извлСчСния, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ достиТСния высокой стСпСни очистки ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ нСвысокой Ρ†Π΅Π½ΠΎΠΉ. ΠšΠ»ΡŽΡ‡Π΅Π²ΠΎΠΉ стадиСй синтСза Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² являСтся Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ гидрогСля – каркаса. Один ΠΈΠ· тСхнологичСских ΠΏΡ€ΠΈΠ΅ΠΌΠΎΠ² – ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ интСрполиэлСктролитного Π°Ρ€ΠΌΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ гидрогСля. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ 2 ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΎΡ‡Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ формирования структуры интСрполиэлСктролитных комплСксов Π½Π° основС ΠΏΠ°Ρ€ Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ²: Β«Π°Π»ΡŒΠ³ΠΈΠ½Π°Ρ‚ натрия – Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½Β» ΠΈ Β«Π»ΠΈΠ³Π½ΠΎΡΡƒΠ»ΡŒΡ„ΠΎΠ½Π°Ρ‚ натрия – Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½Β». ΠŸΠ΅Ρ€Π²Π°Ρ модСль – блочная, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ структура формируСтся Π·Π° счСт ΠΈΠΎΠ½Π½Ρ‹Ρ… связСй ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠ°Ρ€Π±ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ Π°Π»ΡŒΠ³ΠΈΠ½Π°Ρ‚Π° натрия ΠΈ Π°ΠΌΠΈΠ½ΠΎΠ³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ систСмы Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… связСй ΠΈ диспСрсионных взаимодСйствий. Вторая модСль – Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΎΠ½Π½ΠΎ-трубчатая, структура ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ образуСтся посрСдством ΠΈΠΎΠ½Π½Ρ‹Ρ… связСй ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΡƒΠ»ΡŒΡ„ΠΎΠ³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ (Π² составС ΠΏΠ°Π»ΠΎΡ‡ΠΊΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… надмолСкулярных структур Π»ΠΈΠ³Π½ΠΎΡΡƒΠ»ΡŒΡ„ΠΎΠ½Π°Ρ‚Π° натрия) ΠΈ Π°ΠΌΠΈΠ½ΠΎΠ³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… связСй ΠΈ диспСрсионных взаимодСйствий. ΠŸΡ€ΠΈ Π²Ρ‹ΡΡƒΡˆΠΈΠ²Π°Π½ΠΈΠΈ интСрполиэлСктролитных комплСксов Π² свСрхкритичСских условиях Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΡ‡Π½Ρ‹Π΅ Ρ„Π°Π·ΠΎΠ²Ρ‹Π΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹, ΠΏΡ€ΠΈ этом измСнСния Π² структурС гСля становятся Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΡ‹ΠΌΠΈ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹Π΅ ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ мСзопористыС 2-ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Π΅ Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹, Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ структурой. ΠΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹, структура ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π° ΠΏΠΎ 1-ΠΉ ΠΈΠ· Π½Π°Π·Π²Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ фибриллярной структурой, Π° ΠΏΠΎ 2-ΠΉ β€’ структурными элСмСнтами сфСричСской Ρ„ΠΎΡ€ΠΌΡ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ высокой сорбционной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π²ΠΎΠ΄Π΅ ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌΡƒ ΠΊΡ€ΡƒΠ³Ρƒ тяТСлых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΈ низкомолСкулярных токсинов. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – исслСдованиС структурно-сорбционных свойств Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², основа ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… – Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ структурной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π—Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ сорбционной активности Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Β«Π°Π»ΡŒΠ³ΠΈΠ½Π°Ρ‚ натрия – Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½Β» Π² сравнСнии с Β«Π»ΠΈΠ³Π½ΠΎΡΡƒΠ»ΡŒΡ„ΠΎΠ½Π°Ρ‚ натрия – Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½Β» связано, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡƒ, с ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ надмолСкулярной структурой. ДСйствуСт ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² сорбции: Π½Π°ΠΌΠΎΠΊΠ°Π½ΠΈΠ΅, всасываниС, диффузия, осмотичСскиС явлСния ΠΈ химичСскоС взаимодСйствиС, обусловлСнноС высокопористой структурой Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ сорбционно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ². Для цитирования: Π‘Ρ€ΠΎΠ²ΠΊΠΎ О.Π‘., ΠŸΠ°Π»Π°ΠΌΠ°Ρ€Ρ‡ΡƒΠΊ И.А., Π“ΠΎΡ€ΡˆΠΊΠΎΠ²Π° Н.А., Π‘ΠΎΠ³Π΄Π°Π½ΠΎΠ²ΠΈΡ‡ Н.И., Π˜Π²Π°Ρ…Π½ΠΎΠ² А.Π”. Π‘ΠΎΡ€Π±Ρ†ΠΈΠΎΠ½Π½ΠΎ-структурныС свойства Π°ΡΡ€ΠΎΠ³Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° основС Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² // Изв. Π²ΡƒΠ·ΠΎΠ². ЛСсн. ΠΆΡƒΡ€Π½. 2023. β„– 6. Π‘. 190–203. https://doi.org/10.37482/0536-1036-2023-6-190-20

    Analysis of the Aging Processes of Writing Ink: Raman Spectroscopy versus Gas Chromatography Aspects

    No full text
    This work is devoted to the extremely popular but poorly developed scientific and forensic problem of the estimation of the actual dates of inscriptions placed on paper and made by ballpoint pens. It is shown that the degradation of writing inks with time may be controlled via Raman spectroscopy and gas chromatography. The time intervals for the implementation of each of these methods were determined using the ratios of the Raman peak intensities as degradation characteristics rather than their absolute values. In turn, this eliminates the effect of the concentration of a dye. The mutual influence of the volatile components and dyes of writing inks was also investigated and the time interval within which such influence is critical was found. According to the obtained results, a new methodological scheme for determining the age of documents, which were created at least 40 months ago, was proposed

    Novel biocompatible Cu2+-containing composite hydrogels based on bacterial cellulose and poly-1-vinyl-1,2,4-triazole

    No full text
    Novel composite hydrogels representing interpenetrating polymeric networks (IPN) have been synthesized and consisted of Gluconacetobacter xylinus cellulose (GxC) and poly-1-vinyl-1,2,4-triazole (PVT) with Cu2⁺. The composite hydrogels’ mesostructure has been studied from 1.6 ​nm to 2.5 ​μm by small-angle and ultra-small-angle neutron scattering methods. It has been found that IPN complexes have three types of inhomogeneities: GxC, PVT, and PVT complex with Cu2⁺. The amount of the absorbed ions can be tuned as confirmed by electron paramagnetic spectroscopy. Besides, three hierarchy levels of GxC remained in the supramolecular structure of composite hydrogels. Reveling structure formation in these composite hydrogels is essential in fabricating hybrid polymeric materials for regenerative medicine, involving antibacterial or antifungal applications

    Mesoporous Networks of N-Vinylpyrrolidone with (di)Methacrylates as Precursors of Ecological Molecular Imprinted Polymers

    No full text
    Mesoporous polymer networks were prepared via the cross-linking radical copolymerization of non-toxic hydrophilic N-vinylpyrrolidone (VP) with triethylene glycol dimethacrylate (TEGDM) and poly(ethylene glycol) methyl ester methacrylate (PEGMMA) in bulk, using appropriate soluble and thermodynamically compatible macromolecular additives with a branched structure as porogens. The branched copolymers of various monomer compositions were obtained by radical copolymerization in toluene, controlled by 1-decanethiol, and these materials were characterized by a wide set of physical chemical methods. The specific surface areas and surface morphology of the polymer networks were determined by nitrogen low-temperature adsorption or Rose Bengal (RB) sorption, depending on the copolymer compositions and scanning electron microscopy. The electrochemical properties of RB before and after its encapsulation into a branched VP copolymer were studied on a glassy carbon electrode and the interaction between these substances was observed. Quantum chemical modeling of RB-VP or RB-copolymer complexes has been carried out and sufficiently strong hydrogen bonds were found in these systems. The experimental and modeling data demonstrate the high potency of such mesoporous polymer networks as precursors of molecularly imprinted polymers for the recognition of fluorescent dyes as nanomarkers for biomedical practice

    Pseudomonas extremorientalis sp. nov., isolated from a drinking water resevoir

    No full text
    On the basis of phenotypic and genotypic characteristics and 16S rDNA sequence analysis, a novel species belonging to the genus Pseudomonas sensu stricto was identified. The saprophytic, fluorescent bacterium, designated KMM 3447(T), was isolated from a drinking water reservoir near Vladivostok City, Russia. The novel organism was a Gram-negative, aerobic, rod-shaped bacterium that produced a cyclic depsipeptide with surface-active properties. It degraded casein, but did not degrade gelatin, starch, agar or Tween 80. The bacterium was also haemolytic. Growth of the novel bacterium occurred between 4 and 35 degrees C. The predominant cellular fatty acids of the novel pseudomonad were C(16:0), C(16:1(n-7)), C(18:1(n-7)) and C(17:0 cyclo); branched fatty acids were only found in trace amounts. The G+C content of the novel bacterium was 61.0 mol%. 16S rDNA sequence analysis indicated that the novel bacterium had a clear affiliation with Pseudomonas fluorescens and species closely related to this recognized pseudomonad. DNA--DNA hybridization experiments showed that the novel bacterium bound at low levels (27--53%) with the DNA of the type strains of its nearest phylogenetic relatives, namely Pseudomonas tolaasii, Pseudomonas veronii, Pseudomonas orientalis and Pseudomonas rhodesiae, indicating that the novel bacterium represented a novel species within the genus Pseudomonas, for which the name Pseudomonas extremorientalis is proposed; the type strain is KMM 3447(T) (=LMG 19695(T)).200

    Π—Π°Π΄Π°Ρ‡ΠΈ судСбно-тСхничСской экспСртизы Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² для опрСдСлСния давности ΠΈΡ… изготовлСния

    No full text
    The article discusses the problems of forensic-technical expertise by determination of hand-written signatures (records). The main techniques of such examination are described, as well as the problems, which experts face. Here the questions of qualification of experts are raised and recommendations about the choice and appointment of an expert are made. The article provides references to scientific materials in the Russian and foreign scientific sources and also gives examples of the current legislation and jurisprudence of arbitration courts of the Russian FederationΠ’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ судСбно-тСхничСской экспСртизы ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ рукописных подписСй (надписСй). ΠžΠΏΠΈΡΠ°Π½Ρ‹ основныС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ провСдСния Ρ‚Π°ΠΊΠΎΠΉ экспСртизы, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ ΡΡ‚Π°Π»ΠΊΠΈΠ²Π°ΡŽΡ‚ΡΡ спСциалисты. ΠŸΠΎΠ΄Π½ΡΡ‚Ρ‹ вопросы ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ экспСртов ΠΈ Π΄Π°Π½Ρ‹ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ Π²Ρ‹Π±ΠΎΡ€Ρƒ экспСртного учрСТдСния ΠΈ экспСрта. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ссылки Π½Π° Π½Π°ΡƒΡ‡Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π² российских ΠΈ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ… изданиях, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈ судСбной ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ Π°Ρ€Π±ΠΈΡ‚Ρ€Π°ΠΆΠ½Ρ‹Ρ… судов Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈ

    Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from Scytalidium Candidum 3C: A Basis for Development of Biodegradable Wound Dressings

    No full text
    The crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which the 3D polymer network consisted of nanoribbons with a thickness T β‰ˆ 8 nm and a width W β‰ˆ 50 nm, and with a developed specific surface SBET β‰ˆ 260 m2Β·gβˆ’1. Biodegradation for 24 h led to a ten percent decrease in the mean crystal size Dhkl of BC, to two-fold increase in the sizes of nanoribbons, and in the specific surface area SBET up to β‰ˆ 100 m2Β·gβˆ’1. Atomic force and scanning electron microscopy images showed BC microstructure β€œlooseningβ€œafter enzymatic treatment, as well as the formation and accumulation of submicron particles in the cells of the 3D polymer network. Experiments in vitro and in vivo did not reveal cytotoxic effect by the enzyme addition to BC dressings and showed a generally positive influence on the treatment of extensive III-degree burns, significantly accelerating wound healing in rats. Thus, in our opinion, the results obtained can serve as a basis for further development of effective biodegradable dressings for wound healin
    corecore