4 research outputs found

    Discovery of 2‑[[2-Ethyl-6-[4-[2-(3-hydroxy­azetidin-1-yl)-2-oxoethyl]­piperazin-1-yl]-8-methyl­imidazo[1,2‑<i>a</i>]pyridin-3-yl]­methylamino]-4-(4-fluorophenyl)­thiazole-5-carbonitrile (GLPG1690), a First-in-Class Autotaxin Inhibitor Undergoing Clinical Evaluation for the Treatment of Idiopathic Pulmonary Fibrosis

    No full text
    Autotaxin is a circulating enzyme with a major role in the production of lysophosphatic acid (LPA) species in blood. A role for the autotaxin/LPA axis has been suggested in many disease areas including pulmonary fibrosis. Structural modifications of the known autotaxin inhibitor lead compound <b>1</b>, to attenuate hERG inhibition, remove CYP3A4 time-dependent inhibition, and improve pharmacokinetic properties, led to the identification of clinical candidate GLPG1690 (<b>11</b>). Compound <b>11</b> was able to cause a sustained reduction of LPA levels in plasma in vivo and was shown to be efficacious in a bleomycin-induced pulmonary fibrosis model in mice and in reducing extracellular matrix deposition in the lung while also reducing LPA 18:2 content in bronchoalveolar lavage fluid. Compound <b>11</b> is currently being evaluated in an exploratory phase 2a study in idiopathic pulmonary fibrosis patients

    Discovery of 2‑[[2-Ethyl-6-[4-[2-(3-hydroxy­azetidin-1-yl)-2-oxoethyl]­piperazin-1-yl]-8-methyl­imidazo[1,2‑<i>a</i>]pyridin-3-yl]­methylamino]-4-(4-fluorophenyl)­thiazole-5-carbonitrile (GLPG1690), a First-in-Class Autotaxin Inhibitor Undergoing Clinical Evaluation for the Treatment of Idiopathic Pulmonary Fibrosis

    No full text
    Autotaxin is a circulating enzyme with a major role in the production of lysophosphatic acid (LPA) species in blood. A role for the autotaxin/LPA axis has been suggested in many disease areas including pulmonary fibrosis. Structural modifications of the known autotaxin inhibitor lead compound <b>1</b>, to attenuate hERG inhibition, remove CYP3A4 time-dependent inhibition, and improve pharmacokinetic properties, led to the identification of clinical candidate GLPG1690 (<b>11</b>). Compound <b>11</b> was able to cause a sustained reduction of LPA levels in plasma in vivo and was shown to be efficacious in a bleomycin-induced pulmonary fibrosis model in mice and in reducing extracellular matrix deposition in the lung while also reducing LPA 18:2 content in bronchoalveolar lavage fluid. Compound <b>11</b> is currently being evaluated in an exploratory phase 2a study in idiopathic pulmonary fibrosis patients

    Discovery and Optimization of an Azetidine Chemical Series As a Free Fatty Acid Receptor 2 (FFA2) Antagonist: From Hit to Clinic

    No full text
    FFA2, also called GPR43, is a G-protein coupled receptor for short chain fatty acids which is involved in the mediation of inflammatory responses. A class of azetidines was developed as potent FFA2 antagonists. Multiparametric optimization of early hits with moderate potency and suboptimal ADME properties led to the identification of several compounds with nanomolar potency on the receptor combined with excellent pharmacokinetic (PK) parameters. The most advanced compound, 4-[[(<i>R</i>)-1-(benzo­[<i>b</i>]­thiophene-3-carbonyl)-2-methyl-azetidine-2-carbonyl]-(3-chloro-benzyl)-amino]-butyric acid <b>99</b> (GLPG0974), is able to inhibit acetate-induced neutrophil migration strongly in vitro and demonstrated ability to inhibit a neutrophil-based pharmacodynamic (PD) marker, CD11b activation-specific epitope [AE], in a human whole blood assay. All together, these data supported the progression of <b>99</b> toward next phases, becoming the first FFA2 antagonist to reach the clinic

    Discovery, Structure–Activity Relationship, and Binding Mode of an Imidazo[1,2‑<i>a</i>]pyridine Series of Autotaxin Inhibitors

    No full text
    Autotaxin (ATX) is a secreted enzyme playing a major role in the production of lysophosphatidic acid (LPA) in blood through hydrolysis of lysophosphatidyl choline (LPC). The ATX–LPA signaling axis arouses a high interest in the drug discovery industry as it has been implicated in several diseases including cancer, fibrotic diseases, and inflammation, among others. An imidazo­[1,2-<i>a</i>]­pyridine series of ATX inhibitors was identified out of a high-throughput screening (HTS). A cocrystal structure with one of these compounds and ATX revealed a novel binding mode with occupancy of the hydrophobic pocket and channel of ATX but no interaction with zinc ions of the catalytic site. Exploration of the structure–activity relationship led to compounds displaying high activity in biochemical and plasma assays, exemplified by compound <b>40</b>. Compound <b>40</b> was also able to decrease the plasma LPA levels upon oral administration to rats
    corecore