961 research outputs found

    What is the true charge transfer gap in parent insulating cuprates?

    Full text link
    A large body of experimental data point towards a charge transfer instability of parent insulating cuprates to be their unique property. We argue that the true charge transfer gap in these compounds is as small as 0.4-0.5\,eV rather than 1.5-2.0\,eV as usually derived from the optical gap measurements. In fact we deal with a competition of the conventional (3d9^9) ground state and a charge transfer (CT) state with formation of electron-hole dimers which evolves under doping to an unconventional bosonic system. Our conjecture does provide an unified standpoint on the main experimental findings for parent cuprates including linear and nonlinear optical, Raman, photoemission, photoabsorption, and transport properties anyhow related with the CT excitations. In addition we suggest a scenario for the evolution of the CuO2_2 planes in the CT unstable cuprates under a nonisovalent doping.Comment: 13 pages, 5 figures, submitted to PR

    Coherent dynamics of photoinduced nucleation processes

    Full text link
    We study the dynamics of initial nucleation processes of photoinduced structural change of molecular crystals. In order to describe the nonadiabatic transition in each molecule, we employ a model of localized electrons coupled with a fully quantized phonon mode, and the time-dependent Schr\"odinger equation for the model is numerically solved. We found a minimal model to describe the nucleation induced by injection of an excited state of a single molecule in which multiple types of intermolecular interactions are required. In this model coherently driven molecular distortion plays an important role in the successive conversion of electronic states which leads to photoinduced cooperative phenomena.Comment: 14 pages, 5 figure

    Real-space observation of current-driven domain wall motion in submicron magnetic wires

    Full text link
    Spintronic devices, whose operation is based on the motion of a magnetic domain wall (DW), have been proposed recently. If a DW could be driven directly by flowing an electric current instead of a magnetic field, the performance and functions of such device would be drastically improved. Here we report real-space observation of the current-driven DW motion by using a well-defined single DW in a micro-fabricated magnetic wire with submicron width. Magnetic force microscopy (MFM) visualizes that a single DW introduced in the wire is displaced back and forth by positive and negative pulsed-current, respectively. We can control the DW position in the wire by tuning the intensity, the duration and the polarity of the pulsed-current. It is, thus, demonstrated that spintronic device operation by the current-driven DW motion is possible.Comment: Accepted and published in PR

    Propagation of a magnetic domain wall in magnetic wires with asymmetric notches

    Get PDF
    The propagation of a magnetic domain wall (DW) in a submicron magnetic wire consisting of a magnetic/nonmagnetic/magnetic trilayered structure with asymmetric notches was investigated by utilizing the giant magnetoresistance effect. The propagation direction of a DW was controlled by a pulsed local magnetic field, which nucleates the DW at one of the two ends of the wire. It was found that the depinning field of the DW from the notch depends on the propagation direction of the DW.Comment: 12 pages, 3 figure

    A possible mechanism of ultrafast amorphization in phase-change memory alloys: an ion slingshot from the crystalline to amorphous position

    Full text link
    We propose that the driving force of an ultrafast crystalline-to-amorphous transition in phase-change memory alloys are strained bonds existing in the (metastable) crystalline phase. For the prototypical example of GST, we demonstrate that upon breaking of long Ge-Te bond by photoexcitation Ge ion shot from an octahedral crystalline to a tetrahedral amorphous position by the uncompensated force of strained short bonds. Subsequent lattice relaxation stabilizes the tetrahedral surroundings of the Ge atoms and ensures the long-term stability of the optically induced phase.Comment: 6 pages, 3 figure
    corecore