1,657 research outputs found
Coherent dynamics of photoinduced nucleation processes
We study the dynamics of initial nucleation processes of photoinduced
structural change of molecular crystals. In order to describe the nonadiabatic
transition in each molecule, we employ a model of localized electrons coupled
with a fully quantized phonon mode, and the time-dependent Schr\"odinger
equation for the model is numerically solved. We found a minimal model to
describe the nucleation induced by injection of an excited state of a single
molecule in which multiple types of intermolecular interactions are required.
In this model coherently driven molecular distortion plays an important role in
the successive conversion of electronic states which leads to photoinduced
cooperative phenomena.Comment: 14 pages, 5 figure
On Factor Universality in Symbolic Spaces
The study of factoring relations between subshifts or cellular automata is
central in symbolic dynamics. Besides, a notion of intrinsic universality for
cellular automata based on an operation of rescaling is receiving more and more
attention in the literature. In this paper, we propose to study the factoring
relation up to rescalings, and ask for the existence of universal objects for
that simulation relation. In classical simulations of a system S by a system T,
the simulation takes place on a specific subset of configurations of T
depending on S (this is the case for intrinsic universality). Our setting,
however, asks for every configurations of T to have a meaningful interpretation
in S. Despite this strong requirement, we show that there exists a cellular
automaton able to simulate any other in a large class containing arbitrarily
complex ones. We also consider the case of subshifts and, using arguments from
recursion theory, we give negative results about the existence of universal
objects in some classes
Trace Complexity of Chaotic Reversible Cellular Automata
Delvenne, K\r{u}rka and Blondel have defined new notions of computational
complexity for arbitrary symbolic systems, and shown examples of effective
systems that are computationally universal in this sense. The notion is defined
in terms of the trace function of the system, and aims to capture its dynamics.
We present a Devaney-chaotic reversible cellular automaton that is universal in
their sense, answering a question that they explicitly left open. We also
discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible
Computation 2014 (proceedings published by Springer
- …