5 research outputs found

    Landscape monitoring studies of the North Caucasian geochemical province

    Get PDF
    The data on the geochemical features of the bedrocks and soils of the province are given. Considerable attention is paid to regional abundances, as well as enrichment and dispersion factors of the chemical elements in landscapes. Using the example of the North Caucasus, it is shown that for such indicators as phytomass, geological, geomorphological, and geobotanical features, it is possible to make a preliminary outlining of regional structures corresponding to geochemical provinces. At the same time, a subsequent geochemical study of these structures remains mandatory. Upon determining certain geochemical associations, geochemical provinces can be basically distinguished; to a large extent, geochemical properties of these accumulated and scattered associations of elements contribute to the regional soil geochemistry. The results of long-term monitoring studies of the North Caucasus geochemical province have shown that the key features of the regional landscapes are due to the composition of bedrock and the presence of a large number of ore deposits and occurrences. The data obtained are the basis for assessing the state of the environment in conditions of increasing anthropogenic impact, and the established regional abundances can be used to assess the degree of pollution in agricultural, residential, and mining landscapes

    Trace element accumulation by soils and plants in the North Caucasian geochemical province

    Get PDF
    Long-term studies of the North Caucasian geochemical province allowed to establish regional abundances and calculate accumulation (dispersion) factors for chemical elements in rocks, soils, and plants. Certain natural regional patterns characterize the province. Associations of elements in high and low concentrations are often determined by the predominant composition of rocks: carbonate-terrigenous, terrigenous, and igneous. The study of the average contents of several chemical elements in the soils of the province showed that the association of accumulated elements includes metals with different migration characteristics. Thus, despite the rather close values of the ionic radii, Pb, Zn, Cu, and Li (judging by the ionic potential) are characterized by the formation of cations, while Mn, Mo, and Zr form complex ions. Such elements as Zn, Cu, and Pb are mainly accumulated on hydrosulfuric barriers, while Mo, Co, and Mn are stopped by oxygenous barriers. For Cu, Zn, Mo, and Co, biogenic accumulation plays a significant role, while for Pb and Ni it is practically absent. The absolute dispersion of the elements did not reach environmentally hazardous values, although it indicates a fairly intensive migration. In woody plants, Ba, Nb, Sc, Sr, and Zn are accumulated most intensively

    Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress

    Get PDF
    A biogeochemical study of more than 20,000 soil and plant samples from the North Caucasus, Dzungarian Alatau, Kazakh Uplands, and Karatau Mountains revealed features of the chemical element uptake by the local flora. Adaptation of ore prospecting techniques alongside environmental approaches allowed the detection of geochemical changes in ecosystems, and the lessons learned can be embraced for soil phytoremediation. The data on the influence of phytogeochemical stress on the accumulation of more than 20 chemical elements by plants are considered in geochemical provinces, secondary fields of deposits, halos surrounding ore and nonmetallic deposits, zones of regional faults and schist formation, and over lithological contact lines of chemically contrasting rocks overlain by 5-20 m thick soils and unconsolidated cover. We have corroborated the postulate that the element accumulation patterns of native plants under the natural geochemical stress depend not only on the element content in soils and the characteristics of a particular species but also on the values of ionic radii and valences; with an increase in the energy coefficients of a chemical element, its plant accumulation decreases sharply. The contribution of internal factors to element uptake from solutions gives the way to soil phytoremediation over vast contaminated areas. The use of hyperaccumulating species for mining site soil treatment depends on several external factors that can strengthen or weaken the stressful situation, viz., the amount of bedrock exposure and thickness of unconsolidated rocks over ores, the chemical composition of ores and primary halos in ore-containing strata, the landscape and geochemical features of sites, and chemical element migration patterns in the supergene zone

    Trace Element Geochemistry and Genesis of Beryl from Wadi Nugrus, South Eastern Desert, Egypt

    No full text
    Beryl occurs in the ancient Roman mines at Wadi Nugrus, South Eastern Desert of Egypt. It ranges from small crystals to 10 mm in size, and it varies in color, appearing as bright green, pale green, dark green and brown-green with biotite inclusions. The trace and minor elements were analyzed by the SIMS method. The two rims are richer in Cs, Na, Mg, Fe, Sc, V, Rb and H2O than cores but are poor in Mn, Ca, Co, Sr and Li. The bright-green rim is richer than the pale-green one in Na, P, K, Ca, Fe, Rb, Cs and F, but poorer in Mg and Li. The alkaline elements (Cs, Na, Rb) and Fe correlate with the color zoning, and where beryl crystals have a maximum of these elements, the green color is strong and bright. The emerald of Wadi Nugrus has similarities with the geological setting of the Canadian emeralds. Emeralds occur along the contact zone between biotite schists, pegmatites and quartz veins. A large-scale interaction between Be-bearing magmatic fluids from granites and related pegmatites took place with hydrothermal fluids enriched in Cr, V, Sc, Mg and Ca after percolation through pre-existing serpentinite and talc carbonates, metagabbros and biotite schists and additional fluids bearing H2O, NaCl and CO2

    Trace Element Geochemistry and Genesis of Beryl from Wadi Nugrus, South Eastern Desert, Egypt

    No full text
    Beryl occurs in the ancient Roman mines at Wadi Nugrus, South Eastern Desert of Egypt. It ranges from small crystals to 10 mm in size, and it varies in color, appearing as bright green, pale green, dark green and brown-green with biotite inclusions. The trace and minor elements were analyzed by the SIMS method. The two rims are richer in Cs, Na, Mg, Fe, Sc, V, Rb and H2O than cores but are poor in Mn, Ca, Co, Sr and Li. The bright-green rim is richer than the pale-green one in Na, P, K, Ca, Fe, Rb, Cs and F, but poorer in Mg and Li. The alkaline elements (Cs, Na, Rb) and Fe correlate with the color zoning, and where beryl crystals have a maximum of these elements, the green color is strong and bright. The emerald of Wadi Nugrus has similarities with the geological setting of the Canadian emeralds. Emeralds occur along the contact zone between biotite schists, pegmatites and quartz veins. A large-scale interaction between Be-bearing magmatic fluids from granites and related pegmatites took place with hydrothermal fluids enriched in Cr, V, Sc, Mg and Ca after percolation through pre-existing serpentinite and talc carbonates, metagabbros and biotite schists and additional fluids bearing H2O, NaCl and CO2
    corecore