27 research outputs found

    A Cluster-Randomized Trial to Assess the Efficacy of Targeting Trachoma Treatment to Children.

    Get PDF
    Background: The World Health Organization recommends annual treatment of entire trachoma-endemic communities, although children typically have a higher load, longer duration, and greater likelihood of infection. Methods: Forty-eight communities in Matameye, Niger, were randomized to annual oral azithromycin treatment of the entire community or biannual treatment of children aged 0-12 years only. Both children and adults were monitored for ocular chlamydial infection by polymerase chain reaction. Results: The prevalence of childhood infection was reduced in the annually treated arm from 21.2% (95% confidence interval [CI], 15.2%-28.0%) at baseline to 5.8% (95% CI, 3.2%-9.0%) at 36 months (P < .001) and in the biannual arm from 20.2% (95% CI, 15.5%-25.3%) to 3.8% (95% CI, 2.2%-6.0%; P < .001). Adult infection in the annual arm was reduced from 1.7% (95% CI, .9%-2.7%) to 0.3% (95% CI, .0%-.7%) and in the biannual arm from 1.2% (95% CI, .5%-2.2%) to 0.0% (95% CI, .0%-.7%; P = .005). The effect of biannual treatment of children compared with annual treatment of the entire community in both children (95% CI, -.04% to .02%) and adults (95% CI, .9%-2.7%) excluded the prespecified noninferiority threshold of 6% (P = .003 and P < .001, respectively). Conclusions: Periodic distribution of antibiotics to children in trachoma-endemic communities reduces chlamydial infection in both children and untreated adults, suggesting a form of herd protection. Biannual treatment of children was comparable to (specifically, noninferior to) annual treatment of the entire community, and may offer lower antibiotic use and other logistical advantages. Clinical Trials Registration: NCT00792922

    Biannual versus annual mass azithromycin distribution and malaria seroepidemiology among preschool children in Niger: a sub-study of a cluster randomized trial.

    Get PDF
    BACKGROUND: Biannual mass azithromycin administration to preschool children reduces all-cause mortality, but the mechanism for the effect is not understood. Azithromycin has activity against malaria parasites, and malaria is a leading cause of child mortality in the Sahel. The effect of biannual versus annual azithromycin distribution for trachoma control on serological response to merozoite surface protein 1 (MSP-119), a surrogate for malaria incidence, was evaluated among children in Niger. METHODS: Markers of malaria exposure were measured in two arms of a factorial randomized controlled trial designed to evaluate targeted biannual azithromycin distribution to children under 12 years of age compared to annual azithromycin to the entire community for trachoma control (N = 12 communities per arm). Communities were treated for 36 months (6 versus 3 distributions). Dried blood spots were collected at 36 months among children ages 1-5 years, and MSP-119 antibody levels were assessed using a bead-based multiplex assay to measure malaria seroprevalence. RESULTS: Antibody results were available for 991 children. MSP-119 seropositivity was 62.7% in the biannual distribution arm compared to 68.7% in the annual arm (prevalence ratio 0.91, 95% CI 0.83 to 1.00). Mean semi-quantitative antibody levels were lower in the biannual distribution arm compared to the annual arm (mean difference - 0.39, 95% CI - 0.05 to - 0.72). CONCLUSIONS: Targeted biannual azithromycin distribution was associated with lower malaria seroprevalence compared to that in a population that received annual distribution. Trial Registration Clinicaltrials.gov NCT00792922

    Childhood Mortality After Mass Distribution of Azithromycin: A Secondary Analysis of the PRET Cluster-randomized Trial in Niger.

    Get PDF
    BACKGROUND: Mass distributions of azithromycin for trachoma have been associated with secondary benefits, including reductions in child mortality. METHODS: In the Partnership for the Rapid Elimination of Trachoma cluster-randomized trial in Niger, 24 communities were randomized to annual treatment of everyone and 24 communities were randomized to biannual treatment of children under 12 for 3 years (clinicaltrials.gov, NCT00792922). Treatment was a single dose of directly observed oral azithromycin (20 mg/kg up to 1 g in adults). Vital status was assessed during annual census and monitoring visits. In this prespecified secondary analysis, we compared the mortality rate among children 6 months to less than 5 years of age by treatment arm using negative binomial regression. RESULTS: Among children 6 months to less than 5 years of age, 404 deaths occurred during the study period. The mortality rate was 35.6 deaths per 1000 person-years (231 deaths, 95% CI: 30.9-40.9) in the annual arm and 29.0 deaths per 1000 person-years (173 deaths, 95% CI: 24.8-33.8) in the biannual arm. The mortality rate ratio comparing children in the biannual arm to the annual arm was 0.81 (95% CI: 0.66-1.00, P = 0.07; primary outcome). The mortality rate ratio comparing children who died from infectious causes in the biannual arm to the annual arm was 0.73 (95% CI: 0.57-0.94; P = 0.02). No adverse events were reported. CONCLUSIONS: This secondary analysis of a cluster-randomized trial found a nonsignificant 19% decrease in mortality among children 6 months to less than 5 years of age who received biannual azithromycin compared with children who received annual azithromycin. This study was conducted in a high mortality, trachoma-endemic area; thus, results may be specific to this environment only. In addition, the trial was neither designed nor powered to detect a mortality effect, and we cannot rule out the possibility that mortality differences resulted from bias

    Comparison of anthropometric indicators to predict mortality in a population-based prospective study of children under 5 years in Niger.

    Get PDF
    OBJECTIVE: In the present study, we aimed to compare anthropometric indicators as predictors of mortality in a community-based setting. DESIGN: We conducted a population-based longitudinal study nested in a cluster-randomized trial. We assessed weight, height and mid-upper arm circumference (MUAC) on children 12 months after the trial began and used the trial's annual census and monitoring visits to assess mortality over 2 years. SETTING: Niger. PARTICIPANTS: Children aged 6-60 months during the study. RESULTS: Of 1023 children included in the study at baseline, height-for-age Z-score, weight-for-age Z-score, weight-for-height Z-score and MUAC classified 777 (76·0 %), 630 (61·6 %), 131 (12·9 %) and eighty (7·8 %) children as moderately to severely malnourished, respectively. Over the 2-year study period, fifty-eight children (5·7 %) died. MUAC had the greatest AUC (0·68, 95 % CI 0·61, 0·75) and had the strongest association with mortality in this sample (hazard ratio = 2·21, 95 % CI 1·26, 3·89, P = 0·006). CONCLUSIONS: MUAC appears to be a better predictor of mortality than other anthropometric indicators in this community-based, high-malnutrition setting in Niger

    Comparison of Mass Azithromycin Coverage Targets of Children in Niger: A Cluster-Randomized Trachoma Trial.

    Get PDF
    Repeated oral azithromycin distribution targeted only to children has proven effective in reducing the ocular Chlamydia that causes trachoma. Here, we assess whether an enhanced coverage target of at least 90% of children is superior to the World Health Organization recommendation of at least 80%. Twenty-four trachoma-endemic communities in Matamèye, Niger, were randomized to a single day of azithromycin distribution aiming for at least 80% coverage or up to 4 days of treatment and > 90% coverage of children under age 12. All distributions were biannual. Children 15 years were monitored for ocular Chlamydia infection by polymerase chain reaction every 6 months for 36 months in children and at baseline and 36 months in adults. Ocular Chlamydia prevalence in children decreased from 24.9% (95% confidence interval [CI] 15.9-33.8%) to 4.4% (95% CI 0.6-8.2%, P < 0.001) at 36 months in the standard coverage arm and from 15.6% (95% CI 10.0-21.2%) to 3.3% (95% CI 1.0-5.5%; P < 0.001) in the enhanced coverage arm. Enhanced coverage reduced ocular Chlamydia prevalence in children more quickly over time compared with standard (P = 0.04). There was no difference between arms at 36 months in children (2.4% lower with enhanced coverage, 95% CI 7.7-12.5%; P = 0.60). No infection was detected in adults at 36 months. Increasing antibiotic coverage among children from 80% to 90% may yield only short term improvements for trachoma control programs. Targeting treatment to children alone may be sufficient for trachoma control in this setting

    Annual Versus Biannual Mass Azithromycin Distribution and Malaria Parasitemia During the Peak Transmission Season Among Children in Niger.

    Get PDF
    BACKGROUND: Azithromycin has modest efficacy against malaria, and previous cluster randomized trials have suggested that mass azithromycin distribution for trachoma control may play a role in malaria control. We evaluated the effect of annual versus biannual mass azithromycin distribution over a 3-year period on malaria prevalence during the peak transmission season in a region with seasonal malaria transmission in Niger. METHODS: Twenty-four communities in Matameye, Niger, were randomized to annual mass azithromycin distribution (3 distributions to the entire community during the peak transmission season) or biannual-targeted azithromycin distribution (6 distributions to children <12 years of age, including 3 in the peak transmission season and 3 in the low transmission season). Malaria indices were evaluated at 36 months during the high transmission season. RESULTS: Parasitemia prevalence was 42.6% (95% confidence interval: 31.7%-53.6%) in the biannual distribution arm compared with 50.6% (95% confidence interval: 40.3%-60.8%) in the annual distribution arm (P = 0.29). There was no difference in parasite density or hemoglobin concentration in the 2 treatment arms. CONCLUSIONS: Additional rounds of mass azithromycin distribution during low transmission may not have a significant impact on malaria parasitemia measured during the peak transmission season

    The global burden of trichiasis in 2016.

    Get PDF
    BACKGROUND: Trichiasis is present when one or more eyelashes touches the eye. Uncorrected, it can cause blindness. Accurate estimates of numbers affected, and their geographical distribution, help guide resource allocation. METHODS: We obtained district-level trichiasis prevalence estimates in adults for 44 endemic and previously-endemic countries. We used (1) the most recent data for a district, if more than one estimate was available; (2) age- and sex-standardized corrections of historic estimates, where raw data were available; (3) historic estimates adjusted using a mean adjustment factor for districts where raw data were unavailable; and (4) expert assessment of available data for districts for which no prevalence estimates were available. FINDINGS: Internally age- and sex-standardized data represented 1,355 districts and contributed 662 thousand cases (95% confidence interval [CI] 324 thousand-1.1 million) to the global total. Age- and sex-standardized district-level prevalence estimates differed from raw estimates by a mean factor of 0.45 (range 0.03-2.28). Previously non- stratified estimates for 398 districts, adjusted by Ă—0.45, contributed a further 411 thousand cases (95% CI 283-557 thousand). Eight countries retained previous estimates, contributing 848 thousand cases (95% CI 225 thousand-1.7 million). New expert assessments in 14 countries contributed 862 thousand cases (95% CI 228 thousand-1.7 million). The global trichiasis burden in 2016 was 2.8 million cases (95% CI 1.1-5.2 million). INTERPRETATION: The 2016 estimate is lower than previous estimates, probably due to more and better data; scale-up of trichiasis management services; and reductions in incidence due to lower active trachoma prevalence

    Exploring water, sanitation, and hygiene coverage targets for reaching and sustaining trachoma elimination: G-computation analysis.

    Get PDF
    BACKGROUND: Trachoma is the leading infectious cause of blindness. To reduce transmission, water, sanitation, and hygiene (WaSH) improvements are promoted through a comprehensive public health strategy. Evidence supporting the role of WaSH in trachoma elimination is mixed and it remains unknown what WaSH coverages are needed to effectively reduce transmission. METHODS/FINDINGS: We used g-computation to estimate the impact on the prevalence of trachomatous inflammation-follicular among children aged 1-9 years (TF1-9) when hypothetical WaSH interventions raised the minimum coverages from 5% to 100% for "nearby" face-washing water (<30 minutes roundtrip collection time) and adult latrine use in an evaluation unit (EU). For each scenario, we estimated the generalized prevalence difference as the TF1-9 prevalence under the intervention scenarios minus the observed prevalence. Data from 574 cross-sectional surveys conducted in 16 African and Eastern Mediterranean countries were included. Surveys were conducted from 2015-2019 with support from the Global Trachoma Mapping Project and Tropical Data. When modeling interventions among EUs that had not yet met the TF1-9 elimination target, increasing nearby face-washing water and latrine use coverages above 30% was generally associated with consistent decreases in TF1-9. For nearby face-washing water, we estimated a ≥25% decrease in TF1-9 at 65% coverage, with a plateau upon reaching 85% coverage. For latrine use, the estimated decrease in TF1-9 accelerated from 80% coverage upward, with a ≥25% decrease in TF1-9 by 85% coverage. Among EUs that had previously met the elimination target, results were inconclusive. CONCLUSIONS: Our results support Sustainable Development Goal 6 and provide insight into potential WaSH-related coverage targets for trachoma elimination. Targets can be tested in future trials to improve evidence-based WaSH guidance for trachoma

    Tropical Data: Approach and Methodology as Applied to Trachoma Prevalence Surveys

    Get PDF
    PURPOSE: Population-based prevalence surveys are essential for decision-making on interventions to achieve trachoma elimination as a public health problem. This paper outlines the methodologies of Tropical Data, which supports work to undertake those surveys. METHODS: Tropical Data is a consortium of partners that supports health ministries worldwide to conduct globally standardised prevalence surveys that conform to World Health Organization recommendations. Founding principles are health ministry ownership, partnership and collaboration, and quality assurance and quality control at every step of the survey process. Support covers survey planning, survey design, training, electronic data collection and fieldwork, and data management, analysis and dissemination. Methods are adapted to meet local context and needs. Customisations, operational research and integration of other diseases into routine trachoma surveys have also been supported. RESULTS: Between 29th February 2016 and 24th April 2023, 3373 trachoma surveys across 50 countries have been supported, resulting in 10,818,502 people being examined for trachoma. CONCLUSION: This health ministry-led, standardised approach, with support from the start to the end of the survey process, has helped all trachoma elimination stakeholders to know where interventions are needed, where interventions can be stopped, and when elimination as a public health problem has been achieved. Flexibility to meet specific country contexts, adaptation to changes in global guidance and adjustments in response to user feedback have facilitated innovation in evidence-based methodologies, and supported health ministries to strive for global disease control targets
    corecore