2 research outputs found

    Optimal Sizing and Placing of Distributed Generation in Distribution Networks

    Get PDF
    Master of ScienceDepartment of Electrical and Computer EngineeringAnil PahwaDue to the ongoing changes in the structure of the electricity markets, distribution networks have developed an appealing potential for housing distributed generation (DG). In order to make the most out of the present distribution network, this project report verifies the results and method developed in a paper (Optimal Allocation of Embedded Generation on Distribution Networks) by A. Kean and M. O’Malley, which discusses an efficient way of incorporating DG in the current power system. The methodology under consideration elaborates on how certain constraints should be adopted that will lead toward optimally sizing and placing DG in the network under examination. Along with that, the effect of voltage rise and short circuit current are observed which shows that a certain allocation to some buses will cause a sudden rise in voltage and short circuit levels throughout the network. Furthermore, the adopted methodology with its relative constraints is solved using linear programming. Linear programming provides a more accurate allocation than its heuristic counterparts when it comes to embedding DG in smaller networks. The adopted methodology is then applied to a section of the Irish rural distribution network and the results pinpoint that appropriate placement of the DG will pave the way toward higher levels of penetration. The results obtained showed the same pattern as those recorded in the aforementioned source paper, there were only minor differences that are the result of using different software’s than those that were used by the authors of the paper

    A Day Ahead Market Energy Auction for Distribution System Operation

    Full text link
    In this paper, we study a day ahead double energy auction in a distribution system involving dispatchable generation units, renewable generation units supported by battery storage systems(BSSs), fixed loads, price responsive loads, and supply from the Whole Sale Market(WSM) at Locational Marginal Price(LMP). The auction is implemented within a Distribution System Operator (DSO) premises using Mixed Integer Linear Programming (MIP). The proposed auction is cleared at the Distribution LMP (DLMP) and is observed to be weakly budget balanced if no penalty is applied for DSO's deviation from originally committed supply from the WSM. Furthermore, the dynamics of LMP and DLMP, and their effect on distribution market participants scheduled quantities as well as the WSM supply to the distribution system is investigated.Comment: Electro Information Technology (EIT), 2017 IEEE International Conference o
    corecore