6 research outputs found

    The Effects of Opium Addiction on the Immune System Function in Patients with Fungal Infection

    Get PDF
    Background: The use of narcotics such as opium exposes addicts as susceptible targets of different diseases so that they might easily be exposed to different diseases such as fungal infections. The present study aimed to investigate the effects of addiction to opium and fungal infection on plasma levels of certain cytokines including interleukin-4 (IL-4), IL-6, IL-17, Interferon gamma (IFN-γ) and transforming growth factor-β (TGF-β).Methods: Present study included 72 individuals who were divided into 4 groups: 1) opium-addicted with fungal infection; 2) opium-addicted without fungal infection; 3) non-opium-addicted with fungal infection; and 4) normal individuals (non-opium-addicted and non-fungal infection). The fungal samples, after being detected and confirmed by a physician, were prepared based on clinical symptoms and then analyzed by direct smear and culture method. The measurement of the plasma level of cytokines was done by enzyme-linked immunosorbent assay (ELISA) method.Findings: The comparison of the mean of the plasma level of cytokines showed that addiction to opium and fungal infection had significant effect on the plasma levels of IL-17, IFN-γ, TGF-β cytokines in all studied groups. The interaction of addiction to opium and fungal infection was only significant in the case of plasma level of IL-6.Conclusion: Addiction to opium and fungal infection, either separately or simultaneously, poses significant effect on the immune system and causes disorders in the cytokine network and the immune system and also provides a suitable environment for fungal infection

    In Vitro Evaluation of Enzymatic and Antifungal Activities of SoilActinomycetes Isolates and Their Molecular Identifcation by PCR

    Get PDF
    Background: Human cutaneous infection caused by a homogeneous group of keratinophilic fungi called dermatophytes. These fungi are the most common infectious agents in humans that are free of any population and geographic area. Microsporum canis is a cause of dermatophytosis (Tinea) in recent years in Iran and atypical strain has been isolated in Iran. Its cases occur sporadically due to M. canis transmission from puppies and cats to humans. Since this pathogenic dermatophyte is eukaryotes, chemical treatment with antifungal drugs may also affect host tissue cells. Objectives: The aim of the current study was to fnd a new antifungal agent of soil-Actinomycetes from Kerman province against M. canis and Actinomycete isolates were identifed by PCR. Materials and Methods: A number of hundred Actinomycete isolated strains were evaluated from soil of Kerman province, for their antagonistic activity against the M. canis. M. canis of the Persian Type Culture Collection (PTCC) was obtained from the Iranian Research Organization for Science and Technology (IROST). Electron microscope studies of these isolates were performed based on the physiological properties of these antagonists including lipase, amylase, protease and chitinase activities according to the relevant protocols and were identifed using gene 16SrDNA. Results: In this study the most antagonist of Actinomycete isolates with antifungal activity against M. canis isolates of L1, D5, Ks1m, Km2, Kn1, Ks8 and Ks1 were shown in vitro. Electron microscopic studies showed that some fungal strains form spores, mycelia and spore chain. Nucleotide analysis showed that Ks8 had maximum homology (98%) to Streptomyces zaomyceticus strain xsd08149 and L1 displayed 100% homology to Streptomyces sp. HVG6 using 16SrDNA studies. Conclusions: Our fndings showed that Streptomyces has antifungal effects against M. canis

    Indoor environment assessment of special wards of educational hospitals for the detection of fungal contamination sources: A multi-center study (2019-2021)

    Get PDF
    Background and Purpose: The hospital environment was reported as a real habitat for different microorganisms, especially mold fungi. On the other hand, these opportunistic fungi were considered hospital-acquired mold infections in patients with weak immune status. Therefore, this multi-center study aimed to evaluate 23 hospitals in 18 provinces of Iran for fungal contamination sources.Materials and Methods: In total, 43 opened Petri plates and 213 surface samples were collected throughout different wards of 23 hospitals. All collected samples were inoculated into Sabouraud Dextrose Agar containing Chloramphenicol (SC), and the plates were then incubated at 27-30ºC for 7-14 days.Results: A total of 210 fungal colonies from equipment (162, 77.1%) and air (48,22.9%) were identified. The most predominant isolated genus was Aspergillus (47.5%),followed by Rhizopus (14.2%), Mucor (11.7%), and Cladosporium (9.2%). Aspergillus(39.5%), Cladosporium (16.6%), as well as Penicillium and Sterile hyphae (10.4% each), were the most isolates from the air samples. Moreover, intensive care units (38.5%) and operating rooms (21.9%) had the highest number of isolated fungal colonies. Out of 256 collected samples from equipment and air, 163 (63.7%) were positive for fungal growth.The rate of fungal contamination in instrument and air samples was 128/213 (60.1%) and 35/43 (81.2%), respectively. Among the isolated species of Aspergillus, A. flavus complex (38/96, 39.6%), A. niger complex (31/96, 32.3%), and A. fumigatus complex (15/96, 15.6%) were the commonest species.Conclusion: According to our findings, in addition to air, equipment and instrument should be considered among the significant sources of fungal contamination in the indoor environment of hospitals. Airborne fungi, Hospital, Indoor air, Equipment, Sources of fungal contamination in the indoor environment of hospitals

    Antifungal effects of ethanolic and aqueous extracts of Vitex agnus-castus against vaginal isolates of Candida albicans

    No full text
    Background and Purpose: Vulvovaginal candidiasis is one of the most common infections in female genital organs, which is caused by Candida species. Candida albicans is the causative agent of more than 80% of infections, and the role of non-Candida strains in the disease etiology is less prominent. The expansion of Azoles resistance among C. albicans strains is considered an important medical problem. According to previous studies, Vitex agnus-castus (vitex) has some antimicrobial effects. We aimed to evaluate the anti-fungal effects of aqueous and alcoholic extracts of vitex against clinical vaginal isolates of C. albicans in comparison with fluconazole. Materials and Methods: Gas chromatography-mass spectrometry analysis was performed on vitex to identify its possible bioactive components. Forty C. albicans clinical isolates were identified by using germ tube, chlamydospore production, culture on CHROMagar, and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Finally, after the extraction of vitex, drug susceptibility test was carried out according to the clinical laboratory standards institute (CLSI) M27-S4 document guidelines. Results: The major chemical components of vitex leaf as determined by gas chromatography included α-Pinene, isoterpinolene, caryophyllene, and azulene. The minimum inhibitory concentrations (MICs) of aqueous and alcoholic extracts of vitex, as well as fluconazole were within the ranges of 15.62–62.5, 7.81–15.62, and 0.25–8 μg/mL, respectively. Conclusion: Our findings showed that the alcoholic and aqueous extracts of vitex had antifungal activity against clinical isolates of C. albicans. Moreover, the alcoholic extract of vitex and fluconazole were more effective against clinical vaginal isolates of C. albicans compared to the aqueous extract of vitex

    CuO-NiO Nano composites: Synthesis, Characterization, and Cytotoxicity ‎evaluation ‎

    No full text
    Objective(s): In this work, CuO- NiO nano-composites were synthesized via free-surfactant co-precipitation method and then their physiochemical properties, as well as cytotoxicity and antifungal effects, were studied. Methods: The structural and optical properties of CuO-NiO nanostructures were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Atomic force microscope (AFM), UV–Vis absorption, and vibrating sample magnetometer (VSM) techniques. MTT assay was used to evaluate the cytotoxicity of nanostructures. Results: The cubical structure of CuO- NiO nano-composites was confirmed by the XRD technique. The optical study of the samples by UV-Vis indicted a blue shift in absorption wavelength with decreasing particle size due to quantum size effect. The super magnetic behavior of CuO-NiO nano composites after calcination was confirmed by magnetic characterization instrument. Finally, the results of cytotoxicity evaluation of CuO-NiO nano-composites at the lower concentrations on Breast cancer MDA cell lines demonstrate no significant toxicity. Minimum inhibitory concentration range and Minimum fungicidal concentration of nanoparticle were determined 0.97-15.62, 7.81µg/ml and for fluconazole were 1.75-25 µg/ml and 12.58 µg/ml, respectively. Conclusions: The study result of antimicrobialof CuO-NiO nano composites indicated an MIC90 antifungal activity with a concentration of 3.90µg/ml against vaginal isolates of C. albicans. The results of cytotoxicity study of nano-composites at concentration of 50µg/ml and 10µg/ml on the cell line of Breast cancer MDA was equivalent to %60 and %80, respectively

    In vitro antifungal activities of Actinomyces species isolated from soil samples against Trichophyton mentagrophytes

    No full text
    Background and Purpose: Cutaneous infections arise from a homogeneous group of keratinophilic fungi, known as dermatophytes. Since these pathogenic dermatophytes are eukaryotes in nature, use of chemical antifungal agents for treatment may affect the host tissue cells. In this study, we aimed to evaluate the antifungal activity of Actinomyces species against Trichophyton mentagrophytes (abbreviated as T. mentagrophytes). The isolates were obtained from soil samples and identified by polymerase chain reaction (PCR) technique. Material and Methods: In total, 100 strains of Actinomyces species were isolated from soil samples in order to determine their antagonistic activities against T. mentagrophytes in Kerman, Iran. The electron microscopic study of these isolates was performed, based on the physiological properties of these antagonists (e.g., lipase, amylase, protease and chitinase), using relevant protocols. The isolates were identified using gene 16S rDNA via PCR technique. Results: Streptomyces flavogriseus, Streptomyces zaomyceticus strain xsd08149 and Streptomyces rochei were isolated and exhibited the most significant antagonistic activities against T. mentagrophytes. Images were obtained by an electron microscope and some spores, mycelia and morphology of spore chains were identified. Molecular, morphological and biochemical characteristics of these isolates were studied, using the internal 16S rDNA gene. Active isolates of Streptomyces sequence were compared to GenBank sequences. According to nucleotide analysis, isolate D5 had maximum similarity to Streptomyces flavogriseus (99%). Conclusion: The findings of this study showed that Streptomyces isolates from soil samples could exert antifungal effects on T. mentagrophyte
    corecore