9 research outputs found

    The Transcriptional Regulation of Endoglin during Embryonic Stem Cell Differentiation to Blood and Endothelium

    Full text link
    Endoglin (ENG) is an accessory receptor for TGF-β signalling expressed on FLK1+ cells and is required for normal haemangioblast, early hematopoietic and vascular development. An upstream enhancer, Eng -8, together with the promoter (Eng P) has been previously shown to mediate robust endothelial expression in developing mouse embryos. When coupled with two intronic enhancers, Eng +7 and Eng +9, the construct also targets blood clusters in the dorsal aorta, fetal liver and placenta. In this thesis I have shown that ENG expression marks the beginning of haemangioblast differentiation towards the hematopoietic lineage. This was supported by the use of an inducible cell line which demonstrated that the overexpression of ENG promotes haemangioblast differentiation and definitive hematopoiesis. To establish how the previously identified hemato-endothelial tissue specific enhancers of Eng behave at the early progenitor stages, i.e. Haemangioblast and haemogenic endothelium (HE), I targeted various combinations of Eng P and wild-type/mutant enhancers with lacZ reporters into the Hprt locus of HM1 embryonic stem cells and evaluated the specificity of these constructs. These experiments showed that the Eng -8/P/+7/+9 combination preferentially targeted haemangioblasts within the FLK1+ cell compartment in day 3 embryoid bodies in a Gata dependent manner. By contrast, the Eng -8/P construct targeted HE cells with hematopoietic potential in day 2 liquid blast cultures. Importantly, these combinations of regulatory elements enrich for progenitor cells when surface ENG alone proves inadequate. I have sorted haemangioblast and HE fractions marked by the enhancer constructs and performed transcriptome analysis to identify differentially expressed genes and signaling pathways. Taken together, our results show that when different types of cells express the same gene by utilizing distinct combinations of regulatory regions, these elements can be used to isolate and enrich cells when the gene itself lacks sufficient discriminative value. These data will inform future experiments designed to purify cell fractions using novel cell surface markers and further elucidate embryonic cues that could be used to chemically modulate in vitro blood production

    Endoglin potentiates nitric oxide synthesis to enhance definitive hematopoiesis.

    Get PDF
    During embryonic development, hematopoietic cells develop by a process of endothelial-to hematopoietic transition of a specialized population of endothelial cells. These hemogenic endothelium (HE) cells in turn develop from a primitive population of FLK1(+) mesodermal cells. Endoglin (ENG) is an accessory TGF-β receptor that is enriched on the surface of endothelial and hematopoietic stem cells and is also required for the normal development of hemogenic precursors. However, the functional role of ENG during the transition of FLK1(+) mesoderm to hematopoietic cells is ill defined. To address this we used a murine embryonic stem cell model that has been shown to mirror the temporal emergence of these cells in the embryo. We noted that FLK1(+) mesodermal cells expressing ENG generated fewer blast colony-forming cells but had increased hemogenic potential when compared with ENG non-expressing cells. TIE2(+)/CD117(+) HE cells expressing ENG also showed increased hemogenic potential compared with non-expressing cells. To evaluate whether high ENG expression accelerates hematopoiesis, we generated an inducible ENG expressing ES cell line and forced expression in FLK1(+) mesodermal or TIE2(+)/CD117(+) HE cells. High ENG expression at both stages accelerated the emergence of CD45(+) definitive hematopoietic cells. High ENG expression was associated with increased pSMAD2/eNOS expression and NO synthesis in hemogenic precursors. Inhibition of eNOS blunted the ENG induced increase in definitive hematopoiesis. Taken together, these data show that ENG potentiates the emergence of definitive hematopoietic cells by modulating TGF-β/pSMAD2 signalling and increasing eNOS/NO synthesis.The authors thank Dr Zúñiga-Pflücker (University of Toronto) for the ENG-/- and +/- murine ES cells. This work was supported by grants from the National Health and Medical Research Council of Australia, Australian Research Council and the Dr Tom Bee Stem Cell Research Fund to JEP, Cancer Research UK to VK and GL and the BBSRC, Leukaemia and Lymphoma Research, The Leukaemia and Lymphoma Society, Cancer Research UK, and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute to BG.This is the final version of the article. It first appeared from the Company of Biologists via http://dx.doi.org/10.1242/​bio.01149

    Identification of novel regulators of developmental hematopoiesis using Endoglin regulatory elements as molecular probes.

    Get PDF
    Enhancers are the primary determinants of cell identity, and specific promoter/enhancer combinations of Endoglin (ENG) have been shown to target blood and endothelium in the embryo. Here, we generated a series of embryonic stem cell lines, each targeted with reporter constructs driven by specific promoter/enhancer combinations of ENG, to evaluate their discriminative potential and value as molecular probes of the corresponding transcriptome. The Eng promoter (P) in combination with the -8/+7/+9-kb enhancers, targeted cells in FLK1 mesoderm that were enriched for blast colony forming potential, whereas the P/-8-kb enhancer targeted TIE2+/c-KIT+/CD41- endothelial cells that were enriched for hematopoietic potential. These fractions were isolated using reporter expression and their transcriptomes profiled by RNA-seq. There was high concordance between our signatures and those from embryos with defects at corresponding stages of hematopoiesis. Of the 6 genes that were upregulated in both hemogenic mesoderm and hemogenic endothelial fractions targeted by the reporters, LRP2, a multiligand receptor, was the only gene that had not previously been associated with hematopoiesis. We show that LRP2 is indeed involved in definitive hematopoiesis and by doing so validate the use of reporter gene-coupled enhancers as probes to gain insights into transcriptional changes that facilitate cell fate transitions.National Health and Medical Research Council of Australia, Australian Research Council, Dr Tom Bee Stem Cell Research Fund, Cancer Research UK, Biotechnology and Biological Sciences Research Council, Leukaemia and Lymphoma Research, The Leukaemia and Lymphoma Society, core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute (Grant IDs: R01 HL04880, P015PO1HL32262-32, 5P30 DK49216, 5R01 DK53298, 5U01 HL10001-05, R24 DK092760)This is the author accepted manuscript. The final version is available from the American Society of Hematology via http://dx.doi.org/10.1182/blood-2016-02-69787

    A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T

    No full text
    Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy

    Pdgf-ab and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells

    Get PDF
    Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineagecommitted cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor-AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.Link_to_subscribed_fulltex
    corecore