35 research outputs found

    Preparation and characterization of magnetic Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 nanoparticles and investigation of their photocatalytic and anticancer properties on PANC1 cells

    Get PDF
    Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 magnetic nanoparticles were prepared at different molar ratios of PrVO4 to previous layers (Fe3O4/CdWO4) via the co-precipitation method assisted by a sonochemical procedure, in order to investigate the photocatalytic performance of these systems and their cytotoxicity properties. The physico-chemical properties of these magnetic nanoparticles were determined via several experimental methods: X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transformation infrared spectroscopy and ultraviolet-visible diffuse reflection spectroscopy, using a vibrating sample magnetometer and a scanning electron microscope. The average sizes of these nanoparticles were found to be in the range of 60-100 nm. The photocatalytic efficiency of the prepared nanostructures was measured by methylene blue degradation under visible light (assisted by H2O2). The magnetic nanosystem with a 1:2:1 ratio of three oxide components showed the best performance by the degradation of ca. 70 after 120 min of exposure to visible light irradiation. Afterwards, this sample was used for the photodegradation of methyl orange, methyl violet, fenitrothion, and rhodamine-B pollutants. Finally, the mechanism of the photocatalytic reaction was examined by releasing �OH under UV light in a system including terephthalic acid, as well as O2-, OH, and hole scavengers. Additionally, the cytotoxicity of each synthesized sample was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay against the human cell line PANC1 (cancer), and its IC50 was approximately 125 mg/L. © 2019 by the authors

    Synthesis and characterization of Sm2(MoO4)3, Sm2(MoO4)3/GO and Sm2(MoO4)3/C3N4 nanostructures for improved photocatalytic performance and their anti-cancer the MCF-7 cells

    Get PDF
    Samarium molybdate nanoparticles (Sm2(MoO4)3) were prepared through a hydrothermal procedure and were used to form various composites with graphene oxide (GO) and carbon nitride (C3N4). The changes in the dimensions and morphology of the products were prepared using template agents like cetyltrimethyl ammonium bromide (CTAB), Sodium dodecyl sulfate (SDS) (�90), Triton X-100 (90), Polyvinyl alcohol (95), Ethylene glycol (�99), and polyvinylpyrrolidone (PVP). DRS analysis indicated band gap for the Sm2(MoO4), Sm2(MoO4)3/GO, and Sm2(MoO4)3/C3N4 as 3.75, 3.15, and 3.4 respectively. The characteristics of the prepared nanostructures were studied through X-ray diffraction (XRD), energy dispersive X-ray (EDX), and scanning electron microscopy (SEM). Finally, the activity of the prepared Sm2(MoO4)3 as photo-catalysts for the degradation of different organic dyes such as methyl orange (MO), methylene blue (MB), and rhodamine B (Rh B) was evaluated. The photocatalytic property of Sm2(MoO4)3/C3N4 and Sm2(MoO4)3/GO for the degradation of MO, was obtained. Based on the empirical data Sm2(MoO4)3/C3N4 had the strongest photodegradation effect as compared to the other compounds tested after around 40 min. BET analysis revealed that the specific surface area of the Sm2(MoO4)3 nanocomposite prepared using C3N4 is 15 times that of in the absence of C3N4. Also, the cytotoxicity of synthesized samples was evaluated using MTT assay against human cell lines MCF-7 (cancer), and its IC50 was about 125 mg/L. © 202

    A modified sensitive carbon paste electrode for 5-fluorouracil based using a composite of praseodymium erbium tungstate

    Get PDF
    This paper describes the modification of a modified carbon paste electrode (CPE) using nanoparticles of praseodymium erbium tungstate (Pr:Er). The modified electrode was used for the sensitive voltammetric detection of an anticancer drug (5-fluorouracil (5-FU)) using. The modified-CPE was evaluated using cyclic voltammetry (CV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) and the resulting data showed the irreversible 5-fluorouracil oxidation peak around 1.0 V vs. Ag/AgCl. Some key parameters such as pH, the amount of the modifier, potential amplitude, step potential and frequency were studied and optimized. The square wave voltammetry (SWV) analytical calibration curve was linear in the range of 0.01�50 μM, with a detection limit of 0.98 nM analyses. The electron transfer coefficient (α) was also determined to be 0.76. The analyte concentration was also determined in pharmaceutical formulations and recovery percentages were found to be in the range of 96�102. The sensor had good reproducibility and repeatability with acceptable RSD values of 3.6, and 1.02 and a rather long-term stability of around one month. The as-synthesized nanoparticles were also characterized using FESEM, TEM, FTIR and XRD techniques. © 2020 Elsevier B.V

    Synthesis of magnetic fe3o4/znwo4 and fe3o4/znwo4/cevo4 nanoparticles: The photocatalytic effects on organic pollutants upon irradiation with uv-vis light

    Get PDF
    Magnetic Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 nanoparticles with different molar ratios of CeVO4 to other inorganic components were synthesized through co-precipitation with a sonochemical-assisted method. X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, vibrating sample magnetometry, and scanning electron microscopy (SEM) methods were used for the physico�chemical characterization of the obtained nanoparticles. As shown in the SEM images, the average sizes of the Fe3O4 /ZnWO4 and Fe3O4 /ZnWO4 /CeVO4 nanoparticles that formed aggregates were approximately 50�70 nm and 80�100 nm, respectively. The photocatalytic performance of these nanoparticles was examined by measuring methylene blue degradation under visible light (assisted by H2O2). The sample with a mass ratio of 1:2:1 (Fe3O4/ZnWO4/CeVO4, S4) exhibited optimal photocatalytic performance, and thus this sample was subsequently used for the photodegradation of different organic pollutants upon irradiation with ultraviolet (UV) and visible light. Approximately 90 and 70 degradation of methyl violet and methylene blue, respectively, was observed after visible light irradiation. Additionally, the mechanism of the photocatalytic reaction was investigated by measuring ·OH release under UV light in a system with terephthalic acid and by measuring the release of·O2 �,·OH, and hole scavengers. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Electrochemical determination of the antipsychotic medication clozapine by a carbon paste electrode modified with a nanostructure prepared from titania nanoparticles and copper oxide

    Get PDF
    A nanostructure was prepared from titania nanoparticles and copper oxide (TiO2NP@CuO) and used to modify a carbon paste electrode (CPE). The modified CPE is shown to enable sensitive voltammetric determination of the drug clozapine (CLZ). The sensor was characterized by various techniques and some key parameters were optimized. Under the optimum conditions and at a working potential of 0.6 V (vs. Ag/AgCl), the modified CPE has two linear response ranges, one from 30 pmol L�1 to 4 nmol L�1 of CLZ, the other from 4 nmol L�1 to 10 μmol L�1. The detection limit is as low as 9 pM. The transfer coefficient (α) and catalytic rate constant (kcat) were calculated and the reliability of the sensor was estimated for CLZ sensing in real samples where it gave satisfactory results. Figure not available: see fulltext.. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature

    Preparation of Fe3O4/SiO2/TiO2/CeVO4 Nanocomposites: Investigation of Photocatalytic Effects on Organic Pollutants, Bacterial Environments, and New Potential Therapeutic Candidate Against Cancer Cells

    Get PDF
    The new nanocomposite with various molar ratios along with magnetic properties was fabricated via precipitation (assisted by ultrasonic) procedure. The photocatalytic effects of methylene blue (�90 degradation for optimized sample in 100 min) for finding the optimized sample performed under visible light irradiation. Moreover, the photo-antibacterial impacts of bacteria culture environments were found with an optimized sample that had effective destruction of bacteria in comparison to control group. The cytotoxicity properties of panc1 cells and magnetic behaviors of the obtained nanomaterials were evaluated and its IC50 was about 500 mg/L. As an initial step, the structural, morphological and magnetic characteristics of the fabricated nanocomposites were evaluated by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and MAP, UV-visible diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometry (VSM) approaches. Based on SEM results, the size of nanoparticles in fabricated nanocomposite was nearly 50�70 nm for Fe3O4/SiO2/TiO2 and 80�100 nm for Fe3O4/SiO2/TiO2/CeVO4. XRD results showed that desired nanocomposites were truly synthesized without any impurities. © Copyright © 2020 Marsooli, Rahimi-Nasrabadi, Fasihi-Ramandi, Adib, Eghbali-Arani, Ahmadi, Sohouli, Sobhani nasab, Mirhosseini, Gangali, Ehrlich and Joseph

    Synthesis of magnetic fe3o4/znwo4 and fe3o4/znwo4/cevo4 nanoparticles: The photocatalytic effects on organic pollutants upon irradiation with uv-vis light

    Get PDF
    Magnetic Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 nanoparticles with different molar ratios of CeVO4 to other inorganic components were synthesized through co-precipitation with a sonochemical-assisted method. X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, vibrating sample magnetometry, and scanning electron microscopy (SEM) methods were used for the physico�chemical characterization of the obtained nanoparticles. As shown in the SEM images, the average sizes of the Fe3O4 /ZnWO4 and Fe3O4 /ZnWO4 /CeVO4 nanoparticles that formed aggregates were approximately 50�70 nm and 80�100 nm, respectively. The photocatalytic performance of these nanoparticles was examined by measuring methylene blue degradation under visible light (assisted by H2O2). The sample with a mass ratio of 1:2:1 (Fe3O4/ZnWO4/CeVO4, S4) exhibited optimal photocatalytic performance, and thus this sample was subsequently used for the photodegradation of different organic pollutants upon irradiation with ultraviolet (UV) and visible light. Approximately 90 and 70 degradation of methyl violet and methylene blue, respectively, was observed after visible light irradiation. Additionally, the mechanism of the photocatalytic reaction was investigated by measuring ·OH release under UV light in a system with terephthalic acid and by measuring the release of·O2 �,·OH, and hole scavengers. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Preparation of Fe3O4/SiO2/TiO2/CeVO4 Nanocomposites: Investigation of Photocatalytic Effects on Organic Pollutants, Bacterial Environments, and New Potential Therapeutic Candidate Against Cancer Cells

    Get PDF
    The new nanocomposite with various molar ratios along with magnetic properties was fabricated via precipitation (assisted by ultrasonic) procedure. The photocatalytic effects of methylene blue (�90 degradation for optimized sample in 100 min) for finding the optimized sample performed under visible light irradiation. Moreover, the photo-antibacterial impacts of bacteria culture environments were found with an optimized sample that had effective destruction of bacteria in comparison to control group. The cytotoxicity properties of panc1 cells and magnetic behaviors of the obtained nanomaterials were evaluated and its IC50 was about 500 mg/L. As an initial step, the structural, morphological and magnetic characteristics of the fabricated nanocomposites were evaluated by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and MAP, UV-visible diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometry (VSM) approaches. Based on SEM results, the size of nanoparticles in fabricated nanocomposite was nearly 50�70 nm for Fe3O4/SiO2/TiO2 and 80�100 nm for Fe3O4/SiO2/TiO2/CeVO4. XRD results showed that desired nanocomposites were truly synthesized without any impurities. © Copyright © 2020 Marsooli, Rahimi-Nasrabadi, Fasihi-Ramandi, Adib, Eghbali-Arani, Ahmadi, Sohouli, Sobhani nasab, Mirhosseini, Gangali, Ehrlich and Joseph

    Study of scorpionism in Kashan in central Iran

    No full text
    Objective: The present research study was conducted to get new information due to the epidemiology of scorpionism in the region of Kshan, central of Iran. Methodology: This was a descriptive retrospective study. Totally 230 files, belonging to the patients presented to the health centre and hospitals of city of Kashan during one year (March 22nd 2007 - March 21st 2008) were reviewed. In a questioner, this information was included and recorded for each patient: sex and age of scorpion sting victim, background of patient, antivenin treatment, month of scorpion sting, scorpion-stung part of body, color of scorpion and geographical place (rural/urban). The frequencies of epidemiological parameters were converted to the percentage rank. Results: The incidence of scorpion sting in Kashan is calculated as 58 persons in hundred thousand (100,000). The results of this study show that the most of scorpion-stung patients were males (53.04) and the rest were females (46.95). The distribution rate of ages shows that the greatest rate of scorpion stings were reported among the 15-24 year old people. Data collected in this study revealed that the highest incidence of scorpion sting cases took place in summer (75.7) and the lowest in winter (0.4). Totally 73.91 of scorpion sting victims were from urban areas and the rest (26.08) were from rural areas of Kashan. The scorpions brought to the Medical Centres by the patients or their relatives were identified as Odonthobuthus doriae, Hotentta saulcyi, Compsobuthus sp., Androctonus crassicauda and Orthochirus sp. of Buthidae and Scorpio maurus of Scorpionidae in Kashan of Iran. Conclusion: It is concluded that the scorpionism in Kashan is similar to the other areas from the epidemiological cases including: distribution rate of ages, sex and site of stings. Existence of Hemiscorpius lepturus causes more clinical effects among people of south west of Iran than Kashan area
    corecore