3,442 research outputs found
A novel antiproton radial diagnostic based on octupole induced ballistic loss
We report results from a novel diagnostic that probes the outer radial
profile of trapped antiproton clouds. The diagnostic allows us to determine the
profile by monitoring the time-history of antiproton losses that occur as an
octupole field in the antiproton confinement region is increased. We show
several examples of how this diagnostic helps us to understand the radial
dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better
understanding of these dynamics may aid current attempts to trap antihydrogen
atoms
Compression of Antiproton Clouds for Antihydrogen Trapping
Control of the radial profile of trapped antiproton clouds is critical to
trapping antihydrogen. We report the first detailed measurements of the radial
manipulation of antiproton clouds, including areal density compressions by
factors as large as ten, by manipulating spatially overlapped electron plasmas.
We show detailed measurements of the near-axis antiproton radial profile and
its relation to that of the electron plasma
Search For Trapped Antihydrogen
We present the results of an experiment to search for trapped antihydrogen
atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator.
Sensitive diagnostics of the temperatures, sizes, and densities of the trapped
antiproton and positron plasmas have been developed, which in turn permitted
development of techniques to precisely and reproducibly control the initial
experimental parameters. The use of a position-sensitive annihilation vertex
detector, together with the capability of controllably quenching the
superconducting magnetic minimum trap, enabled us to carry out a
high-sensitivity and low-background search for trapped synthesised antihydrogen
atoms. We aim to identify the annihilations of antihydrogen atoms held for at
least 130 ms in the trap before being released over ~30 ms. After a three-week
experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9
positrons to produce 6 10^5 antihydrogen atoms, we have identified six
antiproton annihilation events that are consistent with the release of trapped
antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts,
is incompatible with this observation at a significance of 5.6 sigma. Extensive
simulations predict that an alternative source of annihilations, the escape of
mirror-trapped antiprotons, is highly unlikely, though this possibility has not
yet been ruled out experimentally.Comment: 12 pages, 7 figure
Antihydrogen formation dynamics in a multipolar neutral anti-atom trap
Antihydrogen production in a neutral atom trap formed by an octupole-based
magnetic field minimum is demonstrated using field-ionization of weakly bound
anti-atoms. Using our unique annihilation imaging detector, we correlate
antihydrogen detection by imaging and by field-ionization for the first time.
We further establish how field-ionization causes radial redistribution of the
antiprotons during antihydrogen formation and use this effect for the first
simultaneous measurements of strongly and weakly bound antihydrogen atoms.
Distinguishing between these provides critical information needed in the
process of optimizing for trappable antihydrogen. These observations are of
crucial importance to the ultimate goal of performing CPT tests involving
antihydrogen, which likely depends upon trapping the anti-atom
Trapped antihydrogen
Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1T (∼0.5K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172ms and then released—the first instance of a purely antimatter atomic system confined for any length of time (Andresen etal., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen etal. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000s in the apparatus (Andresen etal., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground stat
Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN
We discuss aspects of antihydrogen studies, that relate to particle physics
ideas and techniques, within the context of the ALPHA experiment at CERN's
Antiproton Decelerator facility. We review the fundamental physics motivations
for antihydrogen studies, and their potential physics reach. We argue that
initial spectroscopy measurements, once antihydrogen is trapped, could provide
competitive tests of CPT, possibly probing physics at the Planck Scale. We
discuss some of the particle detection techniques used in ALPHA. Preliminary
results from commissioning studies of a partial system of the ALPHA Si vertex
detector are presented, the results of which highlight the power of
annihilation vertex detection capability in antihydrogen studies.Comment: Invited talk at Pbar08 - Workshop on Cold Antimatter Plasmas and
Application to Fundamental Physics, Okinawa, Japan, 2008. 14 pages, 8 figure
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
- …