16 research outputs found

    Relationship between Single Walled Carbon Nanotubes Individual Dispersion Behavior and Properties of Electrospun Nanofibers

    Get PDF
    The dispersion stability behavior of single walled carbon nanotube (SWCNT) has important effects on morphological and mechanical properties of SWCNT/polymer composite nanofibers. The effects of SWCNTs incorporation on the morphological and structural developments and the relation between this develop-ments and mechanical properties of the polyacrylonitrile (PAN) nanofibers were demonstrated. The uni-form, stable dispersion and well oriented SWCNT within the PAN matrix were achieved through using polyvinylpyrrolidone (PVP) as dispersing agent. Our data indicate that with increasing the amount of SWCNT (from 0 to 2 wt %), the average nanofiber diameter was increased from 163±19 nm to 307±34 nm. The analysis of the mechanical properties of the composite nanofibers displays that they exhibit an im-provement in the tensile strength of ∼172% from 3.93±0.45 MPa to 10.74±1.03 MPa, and the elastic modu-lus was increased by ~885% from 61.39±15.58 GPa to 605.08±65.55 GPa, as compared to the pure electro-spun nanofibers. The optimal SWCNT concentration for electrospun nanofibers with better morphological and mechanical properties is ~2 wt %. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3516

    A Novel Study of Electrospun Nanofibers Morphology as a Function of Polymer Solution Properties

    Get PDF
    Electrospinning is a process of production fibers with diameters ranging from the submicron down to the nanometer size by applying a high voltage to a polymer solution. The important parameters in the morphology of electrospun polymer fibers are polymer structure, polymer solution properties, processing conditions, and ambient parameters. In the present work electrospinning of polyacrylonitrile (PAN) has been attempted to generate uniform nanofibers without beads. Electrospinning was performed at various concentrations ranging from 4 to 18 w/v%. The effects of polymer solution properties on electrospinnability of the PAN/DMF solutions have investigated. Fiber morphology was observed under a scanning electron microscopy (SEM). For the polymer electrospun from low concentration (Be4. The relationship between solution viscosity and its concentration is in the form: η 0.0205C4.16 and relation between the diameter of electro-spun the PAN nanofiber and solution concentration is in the form: d 0.0326C3.45. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3514

    Fabrication of Homogeneous Multi-Walled Carbon Nanotube/ Poly (Vinyl Alcohol) Composite Nanofibers for Microwave Absorption Application

    Get PDF
    Poly (vinyl alcohol) (PVA) / sodium dodecyl sulfate (SDS) / multi walled carbon nanotubes (MWCNT) camposite nanofibers with various MWCNT contents (up to 10 wt%) were fabricated by electrospinning process and their microwave absorption properties were evaluated by a vector network analyzer in the frequency range of 8 – 12 GHz (X-band) at room temperature. The uniform, stable dispersion and well oriented MWCNT within the PVA matrix were achieved through using SDS as dispersing agent. The SEM analysis of the nanofibers samples revealed that the deformation of the nanofibers increases with increasing MWCNT concentration. Very smooth surface of the composite electrospun nanofibers even for the nanofibers with concentration of 10 wt MWCNT have been successfully prepared because of the high stability dispersion of MWCNT. It was observed that absorption microwave properties improved with increasing in the loading levels of MWCNT. Finally, the PVA/SDS/MWCNT composite nanofibers sample with the 10 wt content of MWCNT has shown the reflection loss of 15 dB at the frequency of 8 GHz. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3558

    A Novel Study of Electrospun Nanofibers Morphology as a Function of Polymer Solution Properties

    Get PDF
    Electrospinning is a process of production fibers with diameters ranging from the submicron down to the nanometer size by applying a high voltage to a polymer solution. The important parameters in the morphology of electrospun polymer fibers are polymer structure, polymer solution properties, processing conditions, and ambient parameters. In the present work electrospinning of polyacrylonitrile (PAN) has been attempted to generate uniform nanofibers without beads. Electrospinning was performed at various concentrations ranging from 4 to 18 w/v%. The effects of polymer solution properties on electrospinnability of the PAN/DMF solutions have investigated. Fiber morphology was observed under a scanning electron microscopy (SEM). For the polymer electrospun from low concentration (Be4. The relationship between solution viscosity and its concentration is in the form: η 0.0205C4.16 and relation between the diameter of electro-spun the PAN nanofiber and solution concentration is in the form: d 0.0326C3.45. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3514
    corecore