198 research outputs found

    The prospects for composites based on boron fibers

    Get PDF
    The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented

    New heat treatment to prepare high quality polycrystalline and single crystal MgB2 in single process

    Full text link
    We report here on a new heat treatment to prepare both dense polycrystalline and single crystal MgB2 high quality samples in one single process. Resistivity measurements for polycrystalline part of the sample gives a residual resistivity ratio RRR=16.6 and a very low normal state resistivity rho(40K)= 0.28 microOhmcm. Both SEM and SQUID study on polycrystals reveal the high quality, dense character and well coupling of grain boundaries. On the other hand, the high quality single crystals have a unique shape that resembles the hexagonal crystal structure. SQUID measurements reveals very weak flux pinning character implying our single crystals to be very clean. In this study, we conclude that heat treatment is playing a major rule on the characteristics of both polycrystalline and single crystal MgB2. Samples are thoroughly characterized by x-ray, resistivity, dc SQUID and SEM

    Theoretical study of metal borides stability

    Full text link
    We have recently identified metal-sandwich (MS) crystal structures and shown with ab initio calculations that the MS lithium monoboride phases are favored over the known stoichiometric ones under hydrostatic pressure [Phys. Rev. B 73, 180501(R) (2006)]. According to previous studies synthesized lithium monoboride tends to be boron-deficient, however the mechanism leading to this phenomenon is not fully understood. We propose a simple model that explains the experimentally observed off-stoichiometry and show that compared to such boron-deficient phases the MS-LiB compounds still have lower formation enthalpy under high pressures. We also investigate stability of MS phases for a large class of metal borides. Our ab initio results suggest that MS noble metal borides are less unstable than the corresponding AlB2_2-type phases but not stable enough to form under equilibrium conditions.Comment: 14 pages, 15 figure

    Effects of Phenol Addition on Oil Extraction from Moroccan Oil Shale by Supercritical Toluene

    Get PDF
    In the present work, the effect of phenol on the supercritical extraction of the organic matter from Tarfaya's oil shale with toluene was evaluated. The experimental results showed clearly that phenol had a significant effect on the yield and the composition of the oils obtained. Moreover, it was shown that phenol was a very efficient modifier for oil shale, giving a good yield of recovery and a suitable maturation of the organic matter. The pitches prepared by mixing phenol and toluene contain more aromatics and have a high char yield at 950 °C compared to those obtained by extraction with supercritical toluene alone

    Magnetic characterization of sintered MgB2 samples: effect of the substitution or doping with Li, Al and Si

    Full text link
    Powdered and sintered MgB2 samples have been characterized through magnetic measurements performed from T = 5 K up to few degrees above the transition temperature of about 39 K. We found that the sintered samples behave as well-connected bodies, showing no trace of granularity. In order to obtain the critical current density value Jc the Critical State Model has been therefore employed in a straightforward way. With the aim either to decrease the electron mean free path or to increase its Jc we have attempted to introduce defects in the MgB2 structure by different procedures: substitution of Lithium on the Magnesium site and doping of the precursor Boron powders with Aluminum and Silicon. The best result in terms of Jc has been achieved by Silicon doping that, moreover, does not significantly affect the transition temperature.Comment: 10 pages, 6 figures, 1 tabl

    First-principle solubilities of alkali and alkaline earth metals in Mg-B alloys

    Full text link
    By devising a novel framework, we present a comprehensive theoretical study of solubilities of alkali (Li, Na, K, Rb, Cs) and alkaline earth (Be, Ca, Sr, Ba) metals in the he boron-rich Mg-B system. The study is based on first-principle calculations of solutes formation energies in MgB2_2, MgB4_4, MgB7_7 alloys and subsequent statistical-thermodynamical evaluation of solubilities. The advantage of the approach consists in considering all the known phase boundaries in the ternary phase diagram. Substitutional Na, Ca, and Li demonstrate the largest solubilities, and Na has the highest (0.5-1 % in MgB7_7 at T=650−1000T=650-1000 K). All the considered interstitials have negligible solubilities. The solubility of Be in MgB7_7 can not be determined because the corresponding low-solubility formation energy is negative indicating the existence of an unknown ternary ground state. We have performed a high-throughput search of ground states in binary Mg-B, Mg-AA, and B-AA systems, and we construct the ternary phase diagrams of Mg-B-AA alloys based on the stable binary phases. Despite its high temperature observations, we find that Sr9_{9}Mg38_{38} is not a low-temperature equilibrium structure. We also determine two new possible ground states CaB4_{4} and RbB4_{4}, not yet observed experimentally.Comment: 5 figure

    Introduction aux matériaux composites : école d'été du CNRS

    No full text

    Recent advances in the field of ceramic fibers and ceramic matrix composites

    No full text
    Progress achieved during the last decade in the field of ceramic fibers and related ceramic matrix composites is reviewed. Both SiC-based and alumina-based fine fibers have been improved in terms of thermal stability and creep resistance with temperature limit of about 1400 and 1200 ∘^{\circ}C, respectively. Two concepts for achieving damage-tolerant ceramic matrix composites have been identified : (i) that of non-oxide composites with a dense matrix in which matrix cracks formed under load are deflected and arrested in a weak fiber coating referred to as the interphase and (ii) that of all-oxide composites with a highly porous matrix with no need of any fiber coating. The lifetime under load of non-oxide composites in oxidizing atmospheres, is improved through the use of multilayered self-healing interphases and matrices deposited from gaseous precursors by chemical vapor infiltration (CVI). Lifetime ranging from 1000 to 10,000 hours at 1200 ∘^{\circ}C under cyclic loading in air are foreseen. Alumina-based composites although attractive for long term exposures in oxidizing atmospheres up to ≈\approx1200 ∘^{\circ}C, are still experimental materials
    • …
    corecore