7 research outputs found

    Direct Neural Machine Translation with Task-level Mixture of Experts models

    Full text link
    Direct neural machine translation (direct NMT) is a type of NMT system that translates text between two non-English languages. Direct NMT systems often face limitations due to the scarcity of parallel data between non-English language pairs. Several approaches have been proposed to address this limitation, such as multilingual NMT and pivot NMT (translation between two languages via English). Task-level Mixture of expert models (Task-level MoE), an inference-efficient variation of Transformer-based models, has shown promising NMT performance for a large number of language pairs. In Task-level MoE, different language groups can use different routing strategies to optimize cross-lingual learning and inference speed. In this work, we examine Task-level MoE's applicability in direct NMT and propose a series of high-performing training and evaluation configurations, through which Task-level MoE-based direct NMT systems outperform bilingual and pivot-based models for a large number of low and high-resource direct pairs, and translation directions. Our Task-level MoE with 16 experts outperforms bilingual NMT, Pivot NMT models for 7 language pairs, while pivot-based models still performed better in 9 pairs and directions

    One pot non-emulsion based hydrothermal synthesis of urchin-shaped hydroxy sodalite using waste coal fly ash

    Get PDF
    Urchin-shaped hydroxy sodalite particles have been synthesized by one pot non-emulsion based hydrothermal conversion of coal fly ash at 100 °C for 96 h in the absence of any surfactants. Crystallization behavior of the particles has been studied by X-ray diffraction, and the characteristic vibration bands of hydroxy sodalite were confirmed by FTIR spectroscopy. BET surface area of the particles are found to be 193, 197, 82 and 44 m2 g-1 for the reaction time of 24 h, 48 h, 72 h and 96 h, respectively. FESEM images revealed that the thread-ball-like particles are converted into urchin-shaped hydroxy sodalite with increasing reaction time from 24 h to 96 h at 100 °C. The elemental analysis of the product studied by EDX indicates the Si/Al and Na/Al ratios of 1.28 and 1.03, respectively which is close to the stoichiometric composition of hydroxy sodalite

    Quality Control at Your Fingertips: Quality-Aware Translation Models

    Full text link
    Maximum-a-posteriori (MAP) decoding is the most widely used decoding strategy for neural machine translation (NMT) models. The underlying assumption is that model probability correlates well with human judgment, with better translations being more likely. However, research has shown that this assumption does not always hold, and decoding strategies which directly optimize a utility function, like Minimum Bayes Risk (MBR) or Quality-Aware decoding can significantly improve translation quality over standard MAP decoding. The main disadvantage of these methods is that they require an additional model to predict the utility, and additional steps during decoding, which makes the entire process computationally demanding. In this paper, we propose to make the NMT models themselves quality-aware by training them to estimate the quality of their own output. During decoding, we can use the model's own quality estimates to guide the generation process and produce the highest-quality translations possible. We demonstrate that the model can self-evaluate its own output during translation, eliminating the need for a separate quality estimation model. Moreover, we show that using this quality signal as a prompt during MAP decoding can significantly improve translation quality. When using the internal quality estimate to prune the hypothesis space during MBR decoding, we can not only further improve translation quality, but also reduce inference speed by two orders of magnitude

    Blue carbon stock of the Bangladesh Sundarban mangroves: what could be the scenario after a century?

    Get PDF
    The total blue carbon stock of the Bangladesh Sundarban mangroves was evaluated and the probable future status after a century was predicted based on the recent trend of changes in the last 30 years and implementing a hybrid model of Markov Chain and Cellular automata. At present 36.24 Tg C and 54.95 Tg C are stored in the above-ground and below-ground compartments respectively resulting in total blue carbon stock of 91.19 Tg C. According to the prediction 15.88 Tg C would be lost from this region by the year 2115. The low saline species composition classes dominated mainly by Heritiera spp. accounts for the major portion of the carbon sock at present (45.60 Tg C), while the highly saline regions stores only 14.90 Tg C. The prediction shows that after a hundred years almost 22.42 Tg C would be lost from the low saline regions accompanied by an increase of 8.20 Tg C in the high saline regions dominated mainly by Excoecaria sp. and Avicennia spp. The net carbon loss would be due to both mangrove area loss (~ 510 km2) and change in species composition leading to 58.28 Tg of potential CO2 emission within the year 2115
    corecore