12 research outputs found

    Chemometrical-electrochemical investigation for comparing inhibitory effects of quercetin and its sulfonamide derivative on human carbonic anhydrase II: Theoretical and experimental evidence

    Get PDF
    This paper reports results of a valuable study on investigation of inhibitory effects of the sulfonamide derivative of quercetin (QD) on human carbonic anhydrase II (CA-II) by electrochemical and chemometrical approaches. To achieve this goal, a glassy carbon electrode (GCE) was chosen as the sensing platform and different electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) were used to investigate and comparing inhibitory effects of quercetin (Q) and QD on CA-II. By the use of EQUISPEC, SPECFIT, SQUAD and REACTLAB as efficient hard-modeling algorithms, bindings of Q and QD with CA-II were investigated and the results confirmed that the QD inhibited the CA-II stronger than Q suggesting a highly relevant role of QD's-SO2NH2 group in inhibiting activity and also was confirmed by docking studies. Finally, a novel EIS technique based on interaction of Q and CA-II was developed for sensitive electroanalytical determination of CA-II and in this section of our study, the sensitivity of the developed electroanalytical methodology was improved by the modification of the GCE was with multi-walled carbon nanotubes-ionic liquid.Fil: Khodarahmi, Reza. Kermanshah University of Medical Sciences; IránFil: Khateri, Shaya. Kermanshah University of Medical Sciences; IránFil: Adibi, Hadi. Kermanshah University of Medical Sciences; IránFil: Nasirian, Vahid. State University of Louisiana; Estados UnidosFil: Hedayati, Mehdi. Kermanshah University of Medical Sciences; IránFil: Faramarzi, Elahe. Kermanshah University of Medical Sciences; IránFil: Soleimani, Shokoufeh. Kermanshah University of Medical Sciences; IránFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Jalalvand, Ali Reza. Kermanshah University Of Medical Sciences; Irá

    Polyethylene Glycol Wrapped Alginate/Graphene Hollow Microfibers as Flexible Supercapacitors

    No full text
    Carbon-modified fibrous structures with high biocompatibility have attracted much attention as supercapacitors due to their low cost, sustainability, abundance, and excellent electrochemical performance. However, some of these carbon-based materials suffer from low specific capacitance and electrochemical performance, which have been significant challenges in developing biocompatible electronic devices. In this regard, several studies have been reported on the development of 3D carbon-based micro architectures that provided high conductivity, energy storage potential, and 3D porosity frameworks. This study reports manufacturing of microfluidic Alginate hollow microfiber modified by water-soluble modified Graphene (BSA-Graphene). These architectures successfully exhibited conductivity enhancement conductivity of about 20 times more compared to Alginate hollow microfibers, and without any significant change in the inner-dimension values of hollow region (220.0 ± 10.0 µm) in comparison with pure alginate hollow microfibers. In the presence of Graphene, more obtained specific surface permeability and active ion adsorption sites could successfully provide as shorter pathways. These obtained continuous ion transport networks resulted in improved electrochemical performance. These desired electrochemical properties of the microfibers make Alginate/Graphene hollow fibers an excellent choice for further use in the development of lightweight flexible supercapacitors with scalable potential to be used in intelligent health electronic gadgets

    Capacitance of Flexible Polymer/Graphene Microstructures with High Mechanical Strength

    Get PDF
    Carbon-modified fibrous structures with high biocompatibility have attracted much attention due to their low cost, sustainability, abundance, and excellent electrical properties. However, some carbon-based materials possess low specific capacitance and electrochemical performance, which pose significant challenges in developing electronic microdevices. In this study, we report a microfluidic-based technique of manufacturing alginate hollow microfibers incorporated by water dispersed modified graphene (bovine serum albumin–graphene). These architectures successfully exhibited enhanced conductivity ∼20 times higher than alginate hollow microfibers without any significant change in the inner dimension of the hollow region (220.0 ± 10.0 μm) compared with pure alginate hollow microfibers. In the presence of graphene, higher specific surface permeability, active ion adsorption sites, and shorter pathways were created. These continuous ion transport networks resulted in improved electrochemical performance. The desired electrochemical properties of the microfibers make alginate/graphene hollow fibers an excellent choice for further use in the development of flexible capacitors with the potential to be used in smart health electronics.This is a manuscript of an article is published as Nasirian, Vahid, Amir Ehsan Niaraki-Asli, Saurabh S. Aykar, Mehrnoosh Taghavimehr, Reza Montazami, and Nicole N. Hashemi. "Capacitance of Flexible Polymer/Graphene Microstructures with High Mechanical Strength." 3D Printing and Additive Manufacturing (2022). Final publication is available from Mary Ann Liebert, Inc., publishers. http://dx.doi.org/10.1089/3dp.2022.0026 Copyright 2022 Mary Ann Liebert, Inc. Posted with permission

    Polyethylene Glycol Wrapped Alginate/Graphene Hollow Microfibers as Flexible Supercapacitors

    No full text
    Carbon-modified fibrous structures with high biocompatibility have attracted much attention as supercapacitors due to their low cost, sustainability, abundance, and excellent electrochemical performance. However, some of these carbon-based materials suffer from low specific capacitance and electrochemical performance, which have been significant challenges in developing biocompatible electronic devices. In this regard, several studies have been reported on the development of 3D carbon-based micro architectures that provided high conductivity, energy storage potential, and 3D porosity frameworks. This study reports manufacturing of microfluidic Alginate hollow microfiber modified by water-soluble modified Graphene (BSA-Graphene). These architectures successfully exhibited conductivity enhancement conductivity of about 20 times more compared to Alginate hollow microfibers, and without any significant change in the inner-dimension values of hollow region (220.0 ± 10.0 µm) in comparison with pure alginate hollow microfibers. In the presence of Graphene, more obtained specific surface permeability and active ion adsorption sites could successfully provide as shorter pathways. These obtained continuous ion transport networks resulted in improved electrochemical performance. These desired electrochemical properties of the microfibers make Alginate/Graphene hollow fibers an excellent choice for further use in the development of lightweight flexible supercapacitors with scalable potential to be used in intelligent health electronic gadgets.This is a pre-print of the article Nasirian, Vahid, Amir Ehsan Niaraki-Asli, Saurabh Aykar, Mehrnoosh Taghavimehr, Reza Montazami, and Nicole Hashemi. "Polyethylene Glycol Wrapped Alginate/Graphene Hollow Microfibers as Flexible Supercapacitors." (2021). DOI: 10.33774/chemrxiv-2021-11wh5. Copyright 2021 The Author(s). The content is available under CC BY NC ND 4.0 License. Posted with permission

    Fabrication of Conductive Hollow Microfibers for Encapsulation of Astrocyte Cells

    Get PDF
    The manufacturing of 3D cell scaffoldings provides advantages for modeling diseases and injuries by physiologically relevant platforms. A triple-flow microfluidic device was developed to rapidly fabricate alginate/graphene hollow microfibers based on the gelation of alginate induced with CaCl2. This five-channel pattern actualized continuous mild fabrication of hollow fibers under an optimized flowing rate ratio of 300: 200: 100 μL.min−1. The polymer solution was 2.5% alginate in 0.1% graphene, and a 30% polyethylene glycol solution was used as the sheath and core solutions. The morphology and physical properties of microstructures were investigated by scanning electron microscopy, electrochemical, and surface area analyzers. Subsequently, these conductive microfibers’ biocompatibility was studied by encapsulating mouse astrocyte cells within these scaffolds. The cells could successfully survive both the manufacturing process and prolonged encapsulation for up to 8 days. These unique 3D hollow scaffolds could significantly enhance the available surface area for nutrient transport to the cells. In addition, these conductive hollow scaffolds illustrated unique advantages such as 0.728 cm3.gr−1 porosity and twice more electrical conductivity in comparison to alginate scaffolds. The results confirm the potential of these scaffolds as a microenvironment that supports cell growth.This is a pre-print of the article Alimoradi, Nima, Vahid Nasirian, Saurabh S. Aykar, Marilyn C. McNamara, Amir Ehsan Niaraki-Asli, Reza Montazami, Andrew Makowski, and Nicole N. Hashemi. "Fabrication of Conductive Hollow Microfibers for Encapsulation of Astrocyte Cells." bioRxiv (2022). DOI: 10.1101/2022.03.09.483669. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). Copyright 2022 The Authors. Posted with permission

    Electrospun captopril‐loaded PCL

    No full text
    Electrospinning as an effective and accessible method is known to yield scaffolds with desired physical, chemical, and biological properties for tissue engineering. In the present study, captopril (CP)-loaded polycaprolactone (PCL)/carbon quantum dots (CQDs) nanocomposite scaffolds were fabricated for bone tissue regeneration. The microstructure and hydrophilicity/hydrophobicity ratio of scaffolds were assessed by scanning electron microscopy and wettability test, respectively. The results showed that the presence of CQDs and CP in the scaffolds decreased the fiber diameter (1180 ± 281.5-345 ± 110 nm) and also it led to an increase in the surface hydrophilicity (137°-0°) of scaffolds. Evaluation of the scaffolds' functional groups was performed using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy. The ultimate tensile strength of scaffolds was in the range of 6.86 ± 0.00 to 22.09 ± 0.06 MPa. Distribution of CQDs in the scaffolds' fibers was investigated by transmission electron microscopy and fluorescent spectrometer. The cell viability, attachment, proliferation, and alkaline phosphatase (ALP) activity of scaffolds were assessed in vitro. Based on the overall results, the scaffold containing CQDs and CP led to a significant increase in the cells' proliferation and ALP activity. Therefore, the PCL/CQDs/CP is recommended as a potential nanocomposite scaffold for bone tissue regeneration

    Fabrication of a novel naltrexone biosensor based on a computationally engineered nanobiocomposite

    No full text
    A computationally engineered impedimetric naltrexone (NLT) biosensor based on immobilization of bovine serum albumin (BSA) onto fullerene-C60/glassy carbon electrode (FLR/GCE) has been developed using initial characterization by computational methods and complementing them by experimental ones. Computational results showed that BSA hydrophobically binds to FLR which is energetically favorable and leads to the spontaneous formation of the stable nanobiocomposite and also showed that interaction of NLT with BSA is mainly driven by hydrogen bonding and hydrophobic interactions. Besides complementing the computational studies, experimental results showed that addition of FLR to the surface of the electrode facilitated electron transfer reactions, and also showed that the presence of BSA inhibits the interfacial electron transfer in some extent due to the nonconductive properties of BSA. The presence of NLT may form a negatively charged electroactive complex with BSA which repels the negatively charged redox probe and decelerates interfacial electron transfer leading to obvious faradaic impedance change. The faradaic impedance responses were linearly related to naltrexone concentration between 0.1 nM and 80 nM and limit of detection (LOD) was calculated to be 0.01 nM (3Sb/b). Finally, the proposed biosensor was successfully applied to determination of NLT in urine samples of both healthy and addict volunteers.Fil: Gholivand, Mohammad Bagher. Razi University. Faculty of Chemistry; IránFil: Jalalvand, Ali R.. Razi University. Faculty of Chemistry; Irán. Universidad Nacional del Litoral; ArgentinaFil: Paimard, Giti. Razi University. Faculty of Chemistry; IránFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; ArgentinaFil: Skov, Thomas. Universidad de Copenhagen; DinamarcaFil: Farhadi, Reza. Razi University. Faculty of Chemistry; IránFil: Ghobadi, Sirous. Razi University. Faculty of Science. Department of Biology; IránFil: Moradi, Nozar. Razi University. Faculty of Chemistry; IránFil: Nasirian, Vahid. Razi University. Faculty of Chemistry; Irá

    Hydrodynamic Assembly of Astrocyte Cells in Conductive Hollow Microfibers

    Get PDF
    The manufacturing of 3D cell scaffoldings provides advantages for modeling diseases and injuries as it enables the creation of physiologically relevant platforms. A triple-flow microfluidic device is developed to rapidly fabricate alginate/graphene hollow microfibers based on the gelation of alginate induced with CaCl2. This five-channel microdevice actualizes continuous mild fabrication of hollow fibers under an optimized flow rate ratio of 300:200:100 µL min−1. The polymer solution is 2.5% alginate in 0.1% graphene and a 30% polyethylene glycol solution is used as the sheath and core solutions. The biocompatibility of these conductive microfibers by encapsulating mouse astrocyte cells (C8D1A) within the scaffolds is investigated. The cells can successfully survive both the manufacturing process and prolonged encapsulation for up to 8 days, where there is between 18–53% of live cells on both the alginate microfibers and alginate/graphene microfibers. These unique 3D hollow scaffolds can significantly enhance the available surface area for nutrient transport to the cells. In addition, these conductive hollow scaffolds illustrate unique advantages such as 0.728 cm3 gr−1 porosity and two times more electrical conductivity in comparison to alginate scaffolds. The results confirm the potential of these scaffolds as a microenvironment that supports cell growth.This article is published as Ouedraogo, Lionel J., Mychal J. Trznadel, McKayla Kling, Vahid Nasirian, Alexandra G. Borst, Mehran Abbasi Shirsavar, Andrew Makowski, Marilyn C. McNamara, Reza Montazami, and Nicole N. Hashemi. "Hydrodynamic Assembly of Astrocyte Cells in Conductive Hollow Microfibers." Advanced biology: e2300455. doi: https://doi.org/10.1002/adbi.202300455. © 2023 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial, and no modifications or adaptations are made

    Advancement of Sensor Integrated Organ-on-Chip Devices

    Get PDF
    Organ-on-chip devices have provided the pharmaceutical and tissue engineering worlds much hope since they arrived and began to grow in sophistication. However, limitations for their applicability were soon realized as they lacked real-time monitoring and sensing capabilities. The users of these devices relied solely on endpoint analysis for the results of their tests, which created a chasm in the understanding of life between the lab the natural world. However, this gap is being bridged with sensors that are integrated into organ-on-chip devices. This review goes in-depth on different sensing methods, giving examples for various research on mechanical, electrical resistance, and bead-based sensors, and the prospects of each. Furthermore, the review covers works conducted that use specific sensors for oxygen, and various metabolites to characterize cellular behavior and response in real-time. Together, the outline of these works gives a thorough analysis of the design methodology and sophistication of the current sensor integrated organ-on-chips.This article is published as Clarke, Gabriel A., Brenna X. Hartse, Amir Ehsan Niaraki Asli, Mehrnoosh Taghavimehr, Niloofar Hashemi, Mehran Abbasi Shirsavar, Reza Montazami et al. "Advancement of sensor integrated organ-on-chip devices." Sensors 21, no. 4 (2021): 1367. DOI: 10.3390/s21041367. Copyright 2021 by the authors. Attribution 4.0 International (CC BY 4.0). Posted with permission

    Advancement of Sensor Integrated Organ-on-Chip Devices

    No full text
    Organ-on-chip devices have provided the pharmaceutical and tissue engineering worlds much hope since they arrived and began to grow in sophistication. However, limitations for their applicability were soon realized as they lacked real-time monitoring and sensing capabilities. The users of these devices relied solely on endpoint analysis for the results of their tests, which created a chasm in the understanding of life between the lab the natural world. However, this gap is being bridged with sensors that are integrated into organ-on-chip devices. This review goes in-depth on different sensing methods, giving examples for various research on mechanical, electrical resistance, and bead-based sensors, and the prospects of each. Furthermore, the review covers works conducted that use specific sensors for oxygen, and various metabolites to characterize cellular behavior and response in real-time. Together, the outline of these works gives a thorough analysis of the design methodology and sophistication of the current sensor integrated organ-on-chips
    corecore