11 research outputs found

    Wash testing of electronic yarn

    Get PDF
    Electronically active yarn (E-yarn) pioneered by the Advanced Textiles Research Group of Nottingham Trent University contains a fine conductive copper wire soldered onto a package die, micro-electro-mechanical systems device or flexible circuit. The die or circuit is then held within a protective polymer packaging (micro-pod) and the ensemble is inserted into a textile sheath, forming a flexible yarn with electronic functionality such as sensing or illumination. It is vital to be able to wash E-yarns, so that the textiles into which they are incorporated can be treated as normal consumer products. The wash durability of E-yarns is summarized in this publication. Wash tests followed a modified version of BS EN ISO 6330:2012 procedure 4N. It was observed that E-yarns containing only a fine multi-strand copper wire survived 25 cycles of machine washing and line drying; and between 5 and 15 cycles of machine washing followed by tumble-drying. Four out of five temperature sensing E-yarns (crafted with thermistors) and single pairs of LEDs within E-yarns functioned correctly after 25 cycles of machine washing and line drying. E-yarns that required larger micro-pods (i.e., 4 mm diameter or 9 mm length) were less resilient to washing. Only one out of five acoustic sensing E-yarns (4 mm diameter micro-pod) operated correctly after 20 cycles of washing with either line drying or tumble-drying. Creating an E-yarn with an embedded flexible circuit populated with components also required a relatively large micro-pod (diameter 0.93 mm, length 9.23 mm). Only one embedded circuit functioned after 25 cycles of washing and line drying. The tests showed that E-yarns are suitable for inclusion in textiles that require washing, with some limitations when larger micro-pods were used. Reduction in the circuit’s size and therefore the size of the micro-pod, may increase wash resilience

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    Finite-element analysis of the mechanical stresses on the core structure of electronically functional yarns

    No full text
    Electronic yarns (E-yarns) are a type of electronic textile where the electronics are embedded within the yarn structure, resulting in a yarn with normal textile properties. This is achieved by soldering thin copper wires onto electronic components, encapsulating the component within a UV-curable resin micro-pod, and covering the component with reinforcing yarns. The resin micro-pod protects both the component and the solder joints, providing the final yarn strength along its main axis: this is critical for its reliability after post-processing and during use. This work explored the use of Finite-Element Analysis to evaluate the mechanical stresses at the soldered joints of the core structure of E-yarns under axial loading before and after the encapsulation of the component. The results of this analysis were compared to the tensile test results of the core structure of the E-yarn

    Advanced nano-biocomposites based on starch

    No full text
    Starch as a biopolymer directly extracted from nature has received much attention in recent years due to its strong advantages such as low cost, wide availability, renewability, and total compostability without toxic residues. Starch-based materials always display properties that are less satisfactory than those of traditional polymer materials, which can be ascribed to the inherent characteristics of starch. To make such materials to be truly competitive and to widen its applications, the development of starch-based nano-biocomposites could be a promising solution. This chapter provides the fundamental knowledge related to starch-based nano-biocomposites as well as the most recent developments in this area. Various types of nanofillers that have been used with plasticized starch are discussed such as montmorillonite, cellulose nanowhiskers, and starch nanoparticles. The preparation strategies for starch-based nano-biocomposites with these types of nanofillers and the corresponding dispersion state and related properties are also largely discussed
    corecore